Skip to main content

Aerogel Sintering: From Optical Glasses to Nuclear Waste Containment

  • Reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

Aerogels are ultraporous materials with a very low permeability. They exhibit high specific surface area but, due to their huge porous volume, their mechanical properties are quite poor. Aerogels belong to two main families: inorganic materials as silica, silicates, and a few aluminates and organic aerogels which are easily transformed into carbon aerogels by a simple pyrolysis thermal treatment. In this chapter, we mainly report experiments performed on alcohol-dried aerogels. Due to their broad range of porosity, aerogels can fit in very different applications: from analysis of cosmic dust to nuclear waste containment glasses. Advantages of large porosity are sometimes used directly like in thermal and acoustic insulation, or in catalyzers, but a too high pore volume can also be a drawback like in glass precursor and host matrix. Fortunately, aerogel porosity can be tailored using sintering or room isostatic compression or eventually a combination of both methods. Knowledge in this area allows now to synthesize aerogels with a broad range of porosity and also a very broad range of texture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barret EP, Joyner LG, Halenda PP. The determination of pore volume and area distribution in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc. 1951;73:373–80.

    Article  Google Scholar 

  • Beurroies I, Duffours L, Delord R, Woignier T, Phalippou J. Fractal geometry change induced by compression – densification. J Non Cryst Solids. 1998;2421:38–44.

    Article  Google Scholar 

  • Biesmans G, Randall D, Français E, Perrut M. Polyurethane-based organic aerogels thermal performance. J Non Cryst Solids. 1998;225:36–41.

    Article  CAS  Google Scholar 

  • Brunauer S, Emmet P, Teller E. Adsorption of gases in multimolecular layers. J Am Ceram Soc. 1938;60:309–19.

    CAS  Google Scholar 

  • Butter D, Caps R, Heinemann U, Hummer E, Kadur A, Schenerpflug P, Fricke J. Thermal conductivity of SiO2 aerogels tiles. In: Fricke J, editor. Aerogels, Berlin: Springer; 1986, p. 104–109.

    Chapter  Google Scholar 

  • Buzykaev AR, et al. Aerogel Cherenkov counters with wavelength shifters and micro-channel plate photo-tubes. J Non Cryst Solids. 1998;225:381–4.

    Article  CAS  Google Scholar 

  • Calas S, Levelut C, Woignier T, Pelous J. Brillouin scattering study of sintered and compressed aerogels. J Non Cryst Solids. 1998;225:244–8.

    Article  CAS  Google Scholar 

  • Dieudonné P, Phalippou J. Textural properties of densified aerogels. J Sol–Gel Sci Technol. 1999;14:1–8.

    Article  Google Scholar 

  • Dieudonné P, Delord P, Phalippou J. Small angle X-ray scattering of aerogel densification. J Non Cryst Solids. 1988;225:220–5.

    Article  Google Scholar 

  • Duffours L, Woignier T, Phalippou J. Irreversible volume shrinkage of silica aerogels under isostatic pressure. J Non Cryst Solids. 1996;194:283–90.

    Article  CAS  Google Scholar 

  • Emmerling A, Fricke J. Small angle scattering and the structure of aerogels. J Non Cryst Solids. 1992;145:113–20.

    Article  CAS  Google Scholar 

  • Fricke J, Emmerling A. Aerogels. J Am Ceram Soc. 1992;75(8):2927–36.

    Article  Google Scholar 

  • Gibiat V, Lefeuvre O, Woignier T, Pelous J, Phalippou J. Acoustic properties and potential applications of silica aerogels. J Non Cryst Solids. 1995;86:244–55.

    Article  Google Scholar 

  • Glatter K. Small angle X ray scattering. London: Academic; 1982.

    Google Scholar 

  • Gronauer M, Fricke J. Acoustic properties of microporous SiO2 aerogels. Acoustica. 1986;59:177–85.

    CAS  Google Scholar 

  • Gross J, Fricke J. Ultrasonic velocity measurements in silica, carbon and organic aerogels. J Non-Cryst Solids. 1992;145:217–22.

    Article  CAS  Google Scholar 

  • Guinier F. Small angle scattering of X-rays. New York: Wiley; 1955.

    Google Scholar 

  • Hrubesh LW. Aerogel applications. J Non Cryst Solids. 1998;225:335–42.

    Article  CAS  Google Scholar 

  • Jullien R, Olivi-Tran N, Hasmy A, Woignier T, Phalippou J, Bourret D, Sempéré R. Scaling theory and numerical applications of aerogel sintering. J Non Cryst Solids. 1995;188:1–10.

    Article  CAS  Google Scholar 

  • Kuhn J, Brandt R, Mehling H, Petricevic R, Fricke J. In situ infrared observation of the pyrolysis process of carbon aerogels. J Non Cryst Solids. 1998;225:58–63.

    Article  CAS  Google Scholar 

  • Mandelbrot BB. The fractal geometry of nature. New York: Freeman; 1982.

    Google Scholar 

  • Pajonk GM. Aerogel catalysts. Appl Catal. 1991;72:217–66.

    Article  CAS  Google Scholar 

  • Perin L, Faivre A, Calas-Etienne S, Woignier T. Nanostructure damage associated to isostatic compression of silica aerogels. J Non Cryst Solids. 2004;333:68–73.

    Article  CAS  Google Scholar 

  • Pirard R, Blacher S, Brouers F, Pirard JP. Interpretation of mercury porosimetry applied to aerogels. J Mater Res. 1995;10(8):2114–9.

    Article  CAS  Google Scholar 

  • Porod G. General theory. In: Glatter O, Kratky O, editors. Small angle X-ray scattering, vol. 2. London: Academic; 1982. p. 17–51.

    Google Scholar 

  • Prassas M, Phalippou J, Zarzycki J. Evolution structurale et texturale des gels monolithiques de silice en fonction de la température. Glastech-Ber. 1983;56K:542–7.

    Google Scholar 

  • Prassas M, Phalippou J, Zarzycki J. Sintering of monolithic silica aerogels. In: Hench LL, Ulrich DR, editors. Science of ceramic chemical processing, vol. 17. New York: Wiley; 1986. p. 156–67.

    Google Scholar 

  • Reichenauer G, Scherer GW. Nitrogen sorption in aerogels. J Non Cryst Solids. 2001;285:167–74.

    Article  CAS  Google Scholar 

  • Reichenauer G, Emmerling A, Fricke J, Pekala RW. Microporosity in carbon aerogels. J Non Cryst Solids. 1998;225:210–4.

    Article  CAS  Google Scholar 

  • Sakaguchi S. Behavior of closed pores formed in consolidation process for silica soot precursor. J Non Cryst Solids. 1995;189:43–9.

    Article  CAS  Google Scholar 

  • Salinger R, Fisher U, Herta C, Fricke J. High surface area carbon aerogels for supercapacitors. J Non Cryst Solids. 1998;225:81–5.

    Article  Google Scholar 

  • Scherer GW. Sintering of low density glasses: I. Theory. J Am Ceram Soc. 1977;60(5–6):236–40.

    Article  CAS  Google Scholar 

  • Scherer GW, Smith DM, Stein D. Deformation of aerogels during characterization. J Non Cryst Solids. 1995a;186:309–15.

    Article  CAS  Google Scholar 

  • Scherer GW, Smith DM, Qiu X, Anderson JM. Compression of aerogels. J Non Cryst Solids. 1995b;186:316–20.

    Article  CAS  Google Scholar 

  • Tsou P. Silica aerogel captures cosmic dust intact. J Non-Cryst Solids. 1995;186:415–27.

    Article  CAS  Google Scholar 

  • Woignier T. Contribution à l’obtention de verres par la voie sol–gel. PhD, Montpellier, 1984.

    Google Scholar 

  • Woignier T, Phalippou J, Prassas M. Glasses from aerogels. J Mater Sci. 1990;25:3118–26.

    Article  CAS  Google Scholar 

  • Woignier T, Quinson JF, Pauthe M, Repellin-Lacroix M, Phalippou J. Evolution of the porous volume during the aerogel-glass transformation. J Phys IV. 1992;C2:123–6.

    Google Scholar 

  • Woignier T, Duffours L, Beurroies I, Phalippou J, Delord P, Gibiat V. Plasticity in aerogel. J Sol–Gel Sci Technol. 1997;8:789–94.

    Article  CAS  Google Scholar 

  • Woignier T, Reynes J, Phalippou J, Dussossoy JL, Jacquet-Francillon N. Sintered silica aerogel: a host matrix for long life nuclear wastes. J Non-Cryst Solids. 1998;225:353–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editors of Journal of Non-Crystalline Solids, Journal of Sol‐Gel Science and Technology, Journal of Material Science for their permission to publish figures here reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Woignier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Phalippou, J., Dieudonné, P., Faivre, A., Woignier, T. (2018). Aerogel Sintering: From Optical Glasses to Nuclear Waste Containment. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-32101-1_56

Download citation

Publish with us

Policies and ethics