Skip to main content

Hierarchical Organization in Monolithic Sol-Gel Materials

  • Reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

The development of synthetic routes to hierarchically organized porous materials containing multiple, discrete sets of pores having disparate length scales is of high interest for a wide range of applications. One possible route toward the formation of multilevel porous architectures relies on the processing of condensable, network-forming precursors (sol-gel processes) in the presence of molecular porogens, lyotropic mesophases, supramolecular architectures, emulsions, organic polymers, or ice. In this review the focus is on sol-gel processing of inorganic and organic precursors with concurrently occurring microscopic and/or macroscopic phase separation for the formation of self-supporting monoliths. The potential and the limitations of the solution-based approaches are presented with special emphasis to recent examples of hierarchically organized silica, metal oxides, and phosphates as well as carbon monoliths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelhelm P, Hu YS, Chuenchom L, Antonietti M, Smarsly BM, Maier J. Generation of hierarchical meso‐ and macroporous carbon from mesophase pitch by spinodal decomposition using polymer templates. Adv Mater. 2007;19:4012–7.

    CAS  Google Scholar 

  • Adelhelm P, Cabrera K, Smarsly BM. On the use of mesophase pitch for the preparation of hierarchical porous carbon monoliths by nanocasting. Sci Technol Adv Mater. 2012;13:015010.

    Google Scholar 

  • Al‐Muhtaseb SA, Ritter JA. Preparation and properties of resorcinol–formaldehyde organic and carbon gels. Adv Mater. 2003;15:101–14.

    Google Scholar 

  • Alvarez S, Fuertes AB. Synthesis of macro/mesoporous silica and carbon monoliths by using a commercial polyurethane foam as sacrificial template. Mater Lett. 2007;61:2378–81.

    CAS  Google Scholar 

  • Antonelli DM, Ying JY. Synthesis of hexagonally packed mesoporous TiO2 by a modified sol–gel method. Angew Chem Int Ed. 1995;34:2014–7.

    CAS  Google Scholar 

  • Antonietti M, Fechler N, Fellinger TP. Carbon aerogels and monoliths: control of porosity and nanoarchitecture via sol–gel routes. Chem Mater. 2014;26:196–210.

    CAS  Google Scholar 

  • Asfaw HD, Roberts M, Younesi R, Edstrom K. Emulsion-templated bicontinuous carbon network electrodes for use in 3D microstructured batteries. J Mater Chem A. 2013;1:13750–8.

    CAS  Google Scholar 

  • Backlund S, Smått JH, Rosenholm JB, Lindén M. Template-free sol–gel synthesis of hierarchically macro- and mesoporous monolithic TiO2. J Dispers Sci Technol. 2007;28:115–9.

    CAS  Google Scholar 

  • Baumann TF, Worsley MA, Han TY-J, Satcher Jr JH. High surface area carbon aerogel monoliths with hierarchical porosity. J Non Cryst Solids. 2008;354:3513–5.

    CAS  Google Scholar 

  • Biener J, Dasgupta S, Shao L, Wang D, Worsley MA, Wittstock A, Lee JRI, Biener MM, Orme CA, Kucheyev SO, Wood BC, Willey TM, Hamza AV, Weismueller J, Hahn H, Baumann TF. Macroscopic 3D nanographene with dynamically tunable bulk properties. Adv Mater. 2012;24:5083–7.

    CAS  Google Scholar 

  • Brandhuber D, Torma V, Raab C, Peterlik H, Kulak A, Hüsing N. Glycol-modified silanes in the synthesis of mesoscopically organized silica monoliths with hierarchical porosity. Chem Mater. 2005;17:4262–71.

    CAS  Google Scholar 

  • Brandhuber D, Peterlik H, Hüsing N. Facile self‐assembly processes to phenylene‐bridged silica monoliths with four levels of hierarchy. Small. 2006;2:503–6.

    CAS  Google Scholar 

  • Brinker CJ, Scherer GW. Sol–gel sciences: the processing and the chemistry of sol–gel processing. Boston: Academic; 1990.

    Google Scholar 

  • Brun N, Ungureanu S, Deleuze H, Backov R. Hybrid foams, colloids and beyond: from design to applications. Chem Soc Rev. 2011;40:771–88.

    CAS  Google Scholar 

  • Cahn JW, Hilliard JE. Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys. 1958;28:258–67.

    CAS  Google Scholar 

  • Candelaria SL, Chen R, Jeong Y-H, Cao G. Highly porous chemically modified carbon cryogels and their coherent nanocomposites for energy applications. Energ Environ Sci. 2012;5:5619–37.

    CAS  Google Scholar 

  • Carn F, Colin A, Achard M-F, Deleuze H, Sellier E, Birot M, Backov R. Inorganic monoliths hierarchically textured via concentrated direct emulsion and micellar templates. J Mater Chem. 2004a;14:1370–6.

    CAS  Google Scholar 

  • Carn F, Colin A, Achard MF, Deleuze H, Saadi Z, Backov R. Rational design of macrocellular silica scaffolds obtained by a tunable sol–gel foaming process. Adv Mater. 2004b;16:140–4.

    CAS  Google Scholar 

  • Chen Y, Yi Y, Brennan JD, Brook MA. Development of macroporous titania monoliths using a biocompatible method. Part 1: material fabrication and characterization. Chem Mater. 2006;18:5326–35.

    CAS  Google Scholar 

  • Cohen N, Silverstein MS. Synthesis of emulsion-templated porous polyacrylonitrile and its pyrolysis to porous carbon monoliths. Polymer. 2011;52:282–7.

    CAS  Google Scholar 

  • Colombo P, Vakifahmetoglu C, Costacurta S. Fabrication of ceramic components with hierarchical porosity. J Mater Sci. 2010;45:5425–55.

    CAS  Google Scholar 

  • Corriu RJ, Leclercq D. Recent developments of molecular chemistry for sol–gel processes. Angew Chem Int Ed. 1996;35:1420–36.

    Google Scholar 

  • Cundy CS, Cox PA. The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem Rev. 2003;103:663–702.

    CAS  Google Scholar 

  • Davis SA, Breulmann M, Rhodes KH, Zhang B, Mann S. Template-directed assembly using nanoparticle building blocks: a nanotectonic approach to organized materials. Chem Mater. 2001;13:3218–26.

    CAS  Google Scholar 

  • Deng Y, Liu C, Yu T, Liu F, Zhang F, Wan Y, Zhang L, Wang C, Tu B, Webley PA, Wang H, Zhao D. Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach. Chem Mater. 2007;19:3271–7.

    CAS  Google Scholar 

  • Depardieu M, Kinadjian N, Backov R. Integrative chemistry: advanced functional cellular materials bearing multiscale porosity. Eur Phys J Spl Topics. 2015;224:1655–68.

    CAS  Google Scholar 

  • Deville S. Freeze‐casting of porous ceramics: a review of current achievements and issues. Adv Eng Mater. 2008;10:155–69.

    CAS  Google Scholar 

  • Deville S. Ice-templating, freeze casting: beyond materials processing. J Mater Res. 2013;28:2202–19.

    CAS  Google Scholar 

  • Dong AA, Wang YJ, Tang Y, Zhang YH, Ren N, Gao Z. Mechanically stable zeolite monoliths with three-dimensional ordered macropores by the transformation of mesoporous silica spheres. Adv Mater. 2002;14:1506–10.

    CAS  Google Scholar 

  • Dutoit D, Schneider M, Baiker A. Titania-silica mixed oxides: I. Influence of sol–gel and drying conditions on structural properties. J Catal. 1995;153:165–76.

    CAS  Google Scholar 

  • El Haskouri J, de Zárate DO, Guillem C, Latorre J, Caldés M, Beltrán A, Beltrán D, Descalzo AB, Rodríguez-López G, Martínez-Máñez R. Silica-based powders and monoliths with bimodal pore systems. Chem Commun. 2002;4:330–1.

    Google Scholar 

  • Elkhatat AM, Al‐Muhtaseb SA. Advances in tailoring resorcinol‐formaldehyde organic and carbon gels. Adv Mater. 2011;23:2887–903.

    CAS  Google Scholar 

  • Enke D, Janowski F, Schwieger W. Porous glasses in the 21st century – a short review. Micropor Mesopor Mater. 2003;60:19–30.

    CAS  Google Scholar 

  • Estevez L, Kelarakis A, Gong Q, Da’as EH, Giannelis EP. Multifunctional graphene/platinum/nafion hybrids via ice templating. J Am Chem Soc. 2011;133:6122–5.

    CAS  Google Scholar 

  • Estevez L, Dua R, Bhandari N, Ramanujapuram A, Wang P, Giannelis EP. A facile approach for the synthesis of monolithic hierarchical porous carbons – high performance materials for amine based CO2 capture and supercapacitor electrode. Energ Environ Sci. 2013;6:1785–90.

    CAS  Google Scholar 

  • Flaig S, Akbarzadeh J, Peterlik H, Hüsing N. Hierarchically organized silica monoliths: influence of different acids on macro-and mesoporous formation. J Sol–gel Sci Technol. 2015;73:103–11.

    CAS  Google Scholar 

  • Fujita K, Konishi J, Nakanishi K, Hirao K. Strong light scattering in macroporous TiO2 monoliths induced by phase separation. Appl Phys Lett. 2004;85:5595–7.

    CAS  Google Scholar 

  • Fujita K, Konishi J, Nakanishi K, Hirao K. Morphological control and strong light scattering in macroporous TiO2 monoliths prepared via a colloid-derived sol–gel route. Sci Technol Adv Mater. 2006;7:511–8.

    CAS  Google Scholar 

  • Fukumoto S, Nakanishi K, Kanamori K. Direct preparation and conversion of copper hydroxide-based monolithic xerogels with hierarchical pores. New J Chem. 2015;39:6771–7.

    CAS  Google Scholar 

  • Galassi C. Processing of porous ceramics: Piezoelectric materials. J Eur Ceram Soc. 2006;26:2951–8.

    CAS  Google Scholar 

  • Gash AE, Tillotson TM, Satcher JH, Poco JF, Hrubesh LW, Simpson RL. Use of epoxides in the sol–gel synthesis of porous iron (III) oxide monoliths from Fe (III) salts. Chem Mater. 2001;13:999–1007.

    CAS  Google Scholar 

  • Gawel B, Gawel K, Oye G. Sol–gel synthesis of non-silica monolithic materials. Materials. 2010;3:2815–33.

    CAS  Google Scholar 

  • Gaweł B, Gaweł K, Hobæk TC, Yasuda M, Øye G. A simple semi sol–gel method for preparation of alumina monoliths with hierarchical pore structures. Mater Chem Phys. 2012;137:414–20.

    Google Scholar 

  • Guo X, Song J, Lvlin Y, Nakanishi K, Kanamori K, Yang H. Preparation of macroporous zirconia monoliths from ionic precursors via an epoxide-mediated sol–gel process accompanied by phase separation. Sci Technol Adv Mater. 2015;16:025003.

    Google Scholar 

  • Gutiérrez MC, Ferrer ML, del Monte F. Ice-templated materials: sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem Mater. 2008;20:634–48.

    Google Scholar 

  • Hartmann S, Brandhuber D, Hüsing N. Glycol-modified silanes: novel possibilities for the synthesis of hierarchically organized (hybrid) porous materials. Acc Chem Res. 2007;40:885–94.

    CAS  Google Scholar 

  • Hartmann S, Sachse A, Galarneau A. Challenges and strategies in the synthesis of mesoporous alumina powders and hierarchical alumina monoliths. Materials. 2012;5:336–49.

    CAS  Google Scholar 

  • Hartmann S, Elsaesser MS, Hüsing N. Polysiloxane‐based block copolymers as structure‐directing agents in the synthesis of hierarchically organized silica monoliths. Zeitschrift für Anorganische und Allgemeine Chemie. 2014;640:641–8.

    CAS  Google Scholar 

  • Hasegawa G, Kanamori K, Nakanishi K, Hanada T. Fabrication of activated carbons with well-defined macropores derived from sulfonated poly(divinylbenzene) networks. Carbon. 2010a;48:1757–66.

    CAS  Google Scholar 

  • Hasegawa G, Kanamori K, Nakanishi K, Hanada T. Facile preparation of hierarchically porous TiO2 monoliths. J Am Ceram Soc. 2010b;93:3110–5.

    CAS  Google Scholar 

  • Hasegawa G, Kanamori K, Nakanishi K, Hanada T. Facile preparation of transparent monolithic titania gels utilizing a chelating ligand and mineral salts. J Sol–gel Sci Technol. 2010c;53:59–66.

    CAS  Google Scholar 

  • Hasegawa G, Ishihara Y, Kanamori K, Miyazaki K, Yamada Y, Nakanishi K, Abe T. Facile preparation of monolithic LiFePO4/carbon composites with well-defined macropores for a lithium-ion battery. Chem Mater. 2011;23:5208–16.

    CAS  Google Scholar 

  • Hasegawa G, Kanamori K, Nakanishi K. Pore properties of hierarchically porous carbon monoliths with high surface area obtained from bridged polysilsesquioxanes. Micropor Mesopor Mater. 2012;155:265–73.

    CAS  Google Scholar 

  • Hasegawa G, Sato T, Kanamori K, Nakano K, Yajima T, Kobayashi Y, Kageyama H, Abe T, Nakanishi K. Hierarchically porous monoliths based on N-doped reduced titanium oxides and their electric and electrochemical properties. Chem Mater. 2013;25:3504–12.

    CAS  Google Scholar 

  • Hasegawa G, Sato T, Kanamori K, Sun C-J, Ren Y, Kobayashi Y, Kageyama H, Abe T, Nakanishi K. Effect of calcination conditions on porous reduced titanium oxides and oxynitrides via a preceramic polymer route. Inorg Chem. 2015;54:2802–8.

    CAS  Google Scholar 

  • Hauf C, Kniep R, Pfaff G. Preparation of various titanium suboxide powders by reduction of TiO2 with silicon. J Mater Sci. 1999;34:1287–92.

    CAS  Google Scholar 

  • Hench LL, West JK. The sol–gel process. Chem Rev. 1990;90:33–72.

    CAS  Google Scholar 

  • Huerta L, El Haskouri J, Vie D, Comes M, Latorre J, Guillem C, Marcos MD, Martinez-Manez R, Beltran A, Beltran D, Amoros P. Nanosized mesoporous silica coatings on ceramic foams: new hierarchical rigid monoliths. Chem Mater. 2007;19:1082–8.

    CAS  Google Scholar 

  • Hüsing N, Schubert U. Aerogels airy materials: chemistry, structure, and properties. Angew Chem Int Ed. 1998;37:23–45.

    Google Scholar 

  • Hüsing N, Raab C, Torma V, Roig A, Peterlik H. Periodically mesostructured silica monoliths from diol-modified silanes. Chem Mater. 2003;15:2690–2.

    Google Scholar 

  • Hüsing N, Brandhuber D, Kaiser P. Glycol-modified organosilanes in the synthesis of inorganic–organic silsesquioxane and silica monoliths. J Sol–gel Sci Technol. 2006;40:131–9.

    Google Scholar 

  • Imhof A, Pine DJ. Ordered macroporous materials by emulsion templating. Nature. 1997;389:948–51.

    CAS  Google Scholar 

  • Inayat A, Reinhardt B, Uhlig H, Einicke WD, Enke D. Silica monoliths with hierarchical porosity obtained from porous glasses. Chem Soc Rev. 2013;42:3753–64.

    CAS  Google Scholar 

  • Ivanova R, Lindman B, Alexandridis P. Effect of glycols on the self-assembly of amphiphilic block copolymers in water. 1. Phase diagrams and structure identification. Langmuir. 2000a;16:3660–75.

    CAS  Google Scholar 

  • Ivanova R, Lindman B, Alexandridis P. Evolution in structural polymorphism of pluronic F127 poly (ethylene oxide)-poly (propylene oxide) block copolymer in ternary systems with water and pharmaceutically acceptable organic solvents: from “glycols” to “oils”. Langmuir. 2000b;16:9058–69.

    CAS  Google Scholar 

  • Ivanova R, Alexandridis P, Lindman B. Interaction of poloxamer block copolymers with cosolvents and surfactants. Colloids Surf A Physicochem Eng Asp. 2001;183:41–53.

    Google Scholar 

  • Kanamori K, Nakanishi K. Controlled pore formation in organotrialkoxysilane-derived hybrids: from aerogels to hierarchically porous monoliths. Chem Soc Rev. 2011;40:754–70.

    CAS  Google Scholar 

  • Keppeler M, Hüsing N. Space-confined click reactions in hierarchically organized silica monoliths. New J Chem. 2011;35:681–90.

    CAS  Google Scholar 

  • Keppeler M, Holzbock J, Akbarzadeh J, Peterlik H, Hüsing N. Inorganic–organic hybrid materials through post-synthesis modification: impact of the treatment with azides on the mesopore structure. Beilstein J Nanotechnol. 2011;2:486–98.

    CAS  Google Scholar 

  • Keppeler M, Holzbock J, Akbarzadeh J, Peterlik H, Hüsing N. Nucleophilic substitution on silica surfaces: comparison of the reactivity of α-versus γ-chlorosubstituted silanes in the reaction with sodium azide. J Ceram Soc Jpn. 2015;123:764–9.

    CAS  Google Scholar 

  • Kido Y, Nakanishi K, Miyasaka A, Kanamori K. Synthesis of monolithic hierarchically porous iron-based xerogels from iron (III) Salts via an epoxide-mediated sol–gel process. Chem Mater. 2012;24:2071–7.

    CAS  Google Scholar 

  • Kido Y, Nakanishi K, Okumura N, Kanamori K. Hierarchically porous nickel/carbon composite monoliths prepared by sol–gel method from an ionic precursor. Micropor Mesopor Mater. 2013;176:64–70.

    CAS  Google Scholar 

  • Kido Y, Hasegawa G, Kanamori K, Nakanishi K. Porous chromium-based ceramic monoliths: oxides (Cr2O3), nitrides (CrN), and carbides (Cr3C2). J Mater Chem A. 2014;2:745–52.

    CAS  Google Scholar 

  • Kimmins SD, Cameron NR. Functional porous polymers by emulsion templating: recent advances. Adv Funct Mater. 2011;21:211–25.

    CAS  Google Scholar 

  • Kistler SS. Coherent expanded aerogels and jellies. Nature. 1931;127:741.

    CAS  Google Scholar 

  • Kitada A, Hasegawa G, Kobayashi Y, Kanamori K, Nakanishi K, Kageyama H. Selective preparation of macroporous monoliths of conductive titanium oxides TinO2n–1 (n= 2, 3, 4, 6). J Am Chem Soc. 2012;134:10894–8.

    CAS  Google Scholar 

  • Kolbrecka K, Przyluski J. Sub-stoichiometric titanium oxides as ceramic electrodes for oxygen evolution – structural aspects of the voltammetric behaviour of TinO2n−1. Electrochim Acta. 1994;39:1591–5.

    CAS  Google Scholar 

  • Konishi J, Fujita K, Nakanishi K, Hirao K. Monolithic TiO2 with controlled multiscale porosity via a template-free sol–gel process accompanied by phase separation. Chem Mater. 2006a;18:6069–74.

    CAS  Google Scholar 

  • Konishi J, Fujita K, Nakanishi K, Hirao K. Phase-separation-induced titania monoliths with well-defined macropores and mesostructured framework from colloid-derived sol–gel systems. Chem Mater. 2006b;18:864–6.

    CAS  Google Scholar 

  • Konishi J, Fujita K, Oiwa S, Nakanishi K, Hirao K. Crystalline ZrO2 monoliths with well-defined macropores and mesostructured skeletons prepared by combining the alkoxy-derived sol–gel process accompanied by phase separation and the solvothermal process. Chem Mater. 2008;20:2165–73.

    CAS  Google Scholar 

  • Konishi J, Fujita K, Nakanishi K, Hirao K, Morisato K, Miyazaki S, Ohira M. Sol–gel synthesis of macro–mesoporous titania monoliths and their applications to chromatographic separation media for organophosphate compounds. J Chromatogr A. 2009;1216:7375–83.

    CAS  Google Scholar 

  • Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–2.

    CAS  Google Scholar 

  • Kuang DB, Brezesinski T, Smarsly B. Hierarchical porous silica materials with a trimodal pore system using surfactant templates. J Am Chem Soc. 2004;126:10534–5.

    CAS  Google Scholar 

  • Li W, Guo X, Zhu Y, Hui Y, Kanamori K, Nakanishi K. Sol–gel synthesis of macroporous TiO2 from ionic precursors via phase separation route. J Sol–gel Sci Technol. 2013a;67:639–45.

    CAS  Google Scholar 

  • Li W, Zhu Y, Guo X, Nakanishi K, Kanamori K, Yang H. Preparation of a hierarchically porous AlPO4 monolith via an epoxide-mediated sol–gel process accompanied by phase separation. Sci Technol Adv Mater. 2013b;14:045007.

    CAS  Google Scholar 

  • Liang C, Dai S. Dual phase separation for synthesis of bimodal meso-/macroporous carbon monoliths. Chem Mater. 2009;21:2115–24.

    CAS  Google Scholar 

  • Lopez-Orozco S, Inayat A, Schwab A, Selvam T, Schwieger W. Zeolitic materials with hierarchical porous structures. Adv Mater. 2011;23:2602–15.

    CAS  Google Scholar 

  • Lu A-H, Schüth F. Nanocasting pathways to create ordered mesoporous solids. Comptes Rendus Chimie. 2005;8:609–20.

    CAS  Google Scholar 

  • Maekawa H, Esquena J, Bishop S, Solans C, Chmelka BF. Meso/macroporous inorganic oxide monoliths from polymer foams. Adv Mater. 2003;15:591–6.

    CAS  Google Scholar 

  • McCusker LB, Liebau F, Engelhardt G. Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts – (IUPAC recommendations 2001). Pure Appl Chem. 2001;73:381–94.

    CAS  Google Scholar 

  • McNaught A, Wilkinson A. IUPAC. Oxford: Blackwell Scientific Publications; 1997.

    Google Scholar 

  • Moreno AH, Arenillas A, Calvo EG, Bermúdez JM, Menéndez JA. Carbonisation of resorcinol–formaldehyde organic xerogels: effect of temperature, particle size and heating rate on the porosity of carbon xerogels. J Anal Appl Pyrolysis. 2013;100:111–6.

    CAS  Google Scholar 

  • Mukai SR, Nishihara H, Tamon H. Formation of monolithic silica gel microhoneycombs (SMHs) using pseudosteady state growth of microstructural ice crystals. Chem Commun. 2004;7:874–5.

    Google Scholar 

  • Naikoo GA, Dar RA, Khan F. Hierarchically macro/mesostructured porous copper oxide: facile synthesis, characterization, catalytic performance and electrochemical study of mesoporous copper oxide monoliths. J Mater Chem A. 2014;2:11792–8.

    CAS  Google Scholar 

  • Nakanishi K. Pore structure control of silica gels based on phase separation. J Porous Mater. 1997;4:67–112.

    CAS  Google Scholar 

  • Nakanishi K. Hierarchically porous materials by phase separation: monoliths. In: Su B-L, Sanchez C, Yan X-Y, editors. Hierarchically structured porous materials. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. p. 241–67.

    Google Scholar 

  • Nakanishi K, Soga N. Phase-separation in gelling silica organic polymer-solution – systems containing poly(sodium styrenesulfonate). J Am Ceram Soc. 1991;74:2518–30.

    CAS  Google Scholar 

  • Nakanishi K, Soga N. Phase separation in silica sol–gel system containing polyacrylic acid I. Gel formation behavior and effect of solvent composition. J Non Cryst Solids. 1992;139:1–13.

    CAS  Google Scholar 

  • Nakanishi K, Tanaka N. Sol–gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc Chem Res. 2007;40:863–73.

    CAS  Google Scholar 

  • Nakanishi K, Sato Y, Ruyat Y, Hirao K. Supramolecular templating of mesopores in phase-separating silica sol-gels incorporated with cationic surfactant. J Sol–gel Sci Technol. 2003;26:567–70.

    CAS  Google Scholar 

  • Nardecchia S, Carriazo D, Ferrer ML, Gutierrez MC, del Monte F. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chem Soc Rev. 2013;42:794–830.

    CAS  Google Scholar 

  • Nishihara H, Mukai SR, Yamashita D, Tamon H. Ordered macroporous silica by ice templating. Chem Mater. 2005;17:683–9.

    CAS  Google Scholar 

  • Nishihara H, Mukai SR, Fujii Y, Tago T, Masuda T, Tamon H. Preparation of monolithic SiO2-Al2O3 cryogels with inter-connected macropores through ice templating. J Mater Chem. 2006;16:3231–6.

    CAS  Google Scholar 

  • Pekala RW, Alviso CT, Kong FM, Hulsey SS. Aerogels derived from multifunctional organic monomers. J Non Cryst Solids. 1992;145:90–8.

    CAS  Google Scholar 

  • Petkovich ND, Stein A. Controlling macro-and mesostructures with hierarchical porosity through combined hard and soft templating. Chem Soc Rev. 2013;42:3721–39.

    CAS  Google Scholar 

  • Ren Y, Ma Z, Bruce PG. Ordered mesoporous metal oxides: synthesis and applications. Chem Soc Rev. 2012;41:4909–27.

    CAS  Google Scholar 

  • Roberts AD, Li X, Zhang H. Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem Soc Rev. 2014a;43:4341–56.

    CAS  Google Scholar 

  • Roberts AD, Wang S, Li X, Zhang H. Hierarchical porous nitrogen-rich carbon monoliths via ice-templating: high capacity and high-rate performance as lithium-ion battery anode materials. J Mater Chem A. 2014b;2:17787–96.

    CAS  Google Scholar 

  • Ruzimuradov O, Hasegawa G, Kanamori K, Nakanishi K. Preparation of hierarchically porous nanocrystalline CaTiO3, SrTiO3 and BaTiO3 perovskite monoliths. J Am Ceram Soc. 2011;94:3335–9.

    CAS  Google Scholar 

  • Sachse A, Galarneau A, Fajula F, Di Renzo F, Creux P, Coq B. Functional silica monoliths with hierarchical uniform porosity as continuous flow catalytic reactors. Micropor Mesopor Mater. 2011;140:58–68.

    CAS  Google Scholar 

  • Sanchez C, Arribart H, Giraud Guille MM. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater. 2005;4:277–88.

    CAS  Google Scholar 

  • Sato Y, Nakanishi K, Hirao K, Jinnai H, Shibayama M, Melnichenko YB, Wignall GD. Formation of ordered macropores and templated nanopores in silica sol–gel system incorporated with EO–PO–EO triblock copolymer. Colloids Surf A Physicochem Eng Asp. 2001;187:117–22.

    Google Scholar 

  • Schubert U, Hüsing N, Lorenz A. Hybrid inorganic–organic materials by sol–gel processing of organofunctional metal alkoxides. Chem Mater. 1995;7:2010–27.

    CAS  Google Scholar 

  • Schüth F. Endo‐and exotemplating to create high‐surface‐area inorganic materials. Angew Chem Int Ed. 2003;42:3604–22.

    Google Scholar 

  • Sel O, Kuang D, Thommes M, Smarsly B. Principles of hierarchical meso-and macropore architectures by liquid crystalline and polymer colloid templating. Langmuir. 2006;22:2311–22.

    CAS  Google Scholar 

  • Sen T, Tiddy G, Casci J, Anderson M. One-pot synthesis of hierarchically ordered porous-silica materials with three orders of length scale. Angew Chem Int Ed. 2003;42:4649–53.

    CAS  Google Scholar 

  • Sen T, Tiddy G, Casci J, Anderson M. Meso-cellular silica foams, macro-cellular silica foams and mesoporous solids: a study of emulsion-mediated synthesis. Micropor Mesopor Mater. 2005;78:255–63.

    CAS  Google Scholar 

  • Silverstein MS. PolyHIPEs: recent advances in emulsion-templated porous polymers. Prog Polym Sci. 2014;39:199–234.

    CAS  Google Scholar 

  • Siouffi AM. Special issue – advances in monoliths – foreword. J Chromatogr A. 2006;1109:1–1.

    CAS  Google Scholar 

  • Smått J-H, Schunk S, Lindén M. Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity. Chem Mater. 2003;15:2354–61.

    Google Scholar 

  • Smått JH, Weidenthaler C, Rosenholm JB, Lindén M. Hierarchically porous metal oxide monoliths prepared by the nanocasting route. Chem Mater. 2006;18:1443–50.

    Google Scholar 

  • Smått JH, Sayler FM, Grano AJ, Bakker MG. Formation of hierarchically porous metal oxide and metal monoliths by nanocasting into silica monoliths. Adv Eng Mater. 2012;14:1059–73.

    Google Scholar 

  • Smith DM, Stein D, Anderson JM, Ackerman W. Preparation of low-density xerogels at ambient pressure. J Non Cryst Solids. 1995;186:104–12.

    CAS  Google Scholar 

  • Stein A, Wilson BE, Rudisill SG. Design and functionality of colloidal-crystal-templated materials-chemical applications of inverse opals. Chem Soc Rev. 2013;42:2763–803.

    CAS  Google Scholar 

  • Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ. Processing routes to macroporous ceramics: a review. J Am Ceram Soc. 2006;89:1771–89.

    CAS  Google Scholar 

  • Su B-L, Sanchez C, Yang X-Y. Hierarchically structured porous materials: from nanoscience to catalysis, separation, optics, energy, and life science. Weinheim: Wiley; 2012.

    Google Scholar 

  • Sun ZK, Deng YH, Wei J, Gu D, Tu B, Zhao DY. Hierarchically ordered macro-/mesoporous silica monolith: tuning macropore entrance size for size-selective adsorption of proteins. Chem Mater. 2011;23:2176–84.

    CAS  Google Scholar 

  • Takenaka S, Takahashi R, Sato S, Sodesawa T. Structural study of mesoporous titania prepared from titanium alkoxide and carboxylic acids. J Sol–gel Sci Technol. 2000;19:711–4.

    CAS  Google Scholar 

  • Tokudome Y, Fujita K, Nakanishi K, Kanamori K, Miura K, Hirao K, Hanada T. Sol–gel synthesis of macroporous YAG from ionic precursors via phase separation route. J Ceram Soc Jpn. 2007a;115:925–8.

    CAS  Google Scholar 

  • Tokudome Y, Fujita K, Nakanishi K, Miura K, Hirao K. Synthesis of monolithic Al2O3 with well-defined macropores and mesostructured skeletons via the sol–gel process accompanied by phase separation. Chem Mater. 2007b;19:3393–8.

    CAS  Google Scholar 

  • Tokudome Y, Nakanishi K, Kanamori K, Fujita K, Akamatsu H, Hanada T. Structural characterization of hierarchically porous alumina aerogel and xerogel monoliths. J Colloid Interface Sci. 2009;338:506–13.

    CAS  Google Scholar 

  • Tokudome Y, Miyasaka A, Nakanishi K, Hanada T. Synthesis of hierarchical macro/mesoporous dicalcium phosphate monolith via epoxide-mediated sol–gel reaction from ionic precursors. J of Sol–gel Scilogy. 2011;57:269–78.

    CAS  Google Scholar 

  • Triantafillidis C, Elsaesser MS, Husing N. Chemical phase separation strategies towards silica monoliths with hierarchical porosity. Chem Soc Rev. 2013;42:3833–46.

    CAS  Google Scholar 

  • Ungureanu S, Birot M, Deleuze H, Schmitt V, Mano N, Backov R. Triple hierarchical micro–meso–macroporous carbonaceous foams bearing highly monodisperse macroporosity. Carbon. 2015;91:311–20.

    CAS  Google Scholar 

  • Vuong G-T, Kaliaguine S, Do T-O. A strategy towards macroporous sponge-like networks of metal oxide-surfactant mesophases and bulk metal oxides. J Porous Mater. 2008;15:679–83.

    CAS  Google Scholar 

  • Wan Y, Zhao D. On the controllable soft-templating approach to mesoporous silicates. Chem Rev. 2007;107:2821–60.

    CAS  Google Scholar 

  • Wang Z, Stein A. Morphology control of carbon, silica, and carbon/silica nanocomposites: from 3D Ordered macro-/mesoporous monoliths to shaped mesoporous particles. Chem Mater. 2008;20:1029–40.

    CAS  Google Scholar 

  • Wang Z, Kiesel ER, Stein A. Silica-free syntheses of hierarchically ordered macroporous polymer and carbon monoliths with controllable mesoporosity. J Mater Chem. 2008;18:2194–200.

    CAS  Google Scholar 

  • Wei J, Jiang Z-T, Jiang S, Li R, Tan J. Sol–gel synthesis and characterization of macro-mesoporous titania monolith and its application in chromatographic separation of carboxylates. J Liquid Chromatgr Relat Technol. 2013;36:1616–30.

    CAS  Google Scholar 

  • Weinberger M, Puchegger S, Rentenberger C, Puchberger M, Hüsing N, Peterlik H. Mesoporous dendrimer silica monoliths studied by small-angle X-ray scattering. J Mater Chem. 2008;18:4783–9.

    CAS  Google Scholar 

  • Weinberger M, Puchegger S, Fröschl T, Babonneau F, Peterlik H, Hüsing N. Sol− Gel processing of a glycolated cyclic organosilane and its pyrolysis to silicon oxycarbide monoliths with multiscale porosity and large surface areas. Chem Mater. 2010;22:1509–20.

    CAS  Google Scholar 

  • Weitkamp J, Sing KSW, Schüth F. Handbook of porous solids. Weinheim: Wiley-VCH; 2002.

    Google Scholar 

  • White G, Mackenzie K, Johnston J. Carbothermal synthesis of titanium nitride. J Mater Sci. 1992;27:4287–93.

    CAS  Google Scholar 

  • Yanagisawa T, Shimizu T, Kuroda K, Kato C. The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bull Chem Soc Jpn. 1990;63:988–92.

    CAS  Google Scholar 

  • Yang H, Zhao D. Synthesis of replica mesostructures by the nanocasting strategy. J Mater Chem. 2005;15:1217–31.

    CAS  Google Scholar 

  • Yuan Z-Y, Su B-L. Insights into hierarchically meso–macroporous structured materials. J Mater Chem. 2006;16:663–77.

    CAS  Google Scholar 

  • Yuan J, Bai X, Zhao M, Zheng L. C12mimBr ionic liquid/SDS vesicle formation and use as template for the synthesis of hollow silica spheres. Langmuir. 2010;26:11726–31.

    CAS  Google Scholar 

  • Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S. Carbon materials for chemical capacitive energy storage. Adv Mater. 2011;23:4828–50.

    CAS  Google Scholar 

  • Zhao J, Jiang Z-T, Tan J, Li R. Sol–gel synthesis and characterization of titania monolith with bimodal porosity. J Sol–gel Sci Technol. 2011;58:436–41.

    CAS  Google Scholar 

  • Zhu Y, Shimizu T, Kitajima T, Morisato K, Moitra N, Brun N, Kiyomura T, Kanamori K, Takeda K, Kurata H. Synthesis of robust hierarchically porous zirconium phosphate monolith for efficient ion adsorption. New J Chem. 2015;39:2444–50.

    CAS  Google Scholar 

Download references

Acknowledgments

This chapter is reproduced from http://dx.doi.org/10.1039/C5CS00710K with permission from the Royal Society of Chemistry.

For parts of the work highlighted in this chapter, we thank the Deutsche Forschungsgemeinschaft within the Priority Programme 1570 “Poröse Medien mit definierter Porenstruktur in der Verfahrenstechnik – Modellierung, Anwendungen, Synthese” (Hu 1427/6-1) and the Austrian Science Foundation FWF (Project I 1605-N20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Hüsing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Feinle, A., Elsaesser, M.S., Hüsing, N. (2018). Hierarchical Organization in Monolithic Sol-Gel Materials. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-32101-1_127

Download citation

Publish with us

Policies and ethics