Skip to main content

Metabolite Profiling of In Vitro Plant Systems

  • Living reference work entry
  • First Online:
Bioprocessing of Plant In Vitro Systems

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Gas chromatography-mass spectrometry is one of the base analytical platforms used in plant metabolite profiling. The remarkable recent methodological and technological developments in GC-MS profiling expand the possibilities for its application in different fields of plant science including plant biotechnology. The methods of extraction, fractionation, derivatization, and metabolite identification, associated with GC-MS metabolite profiling, along with examples demonstrating the power and applicability of GC-MS in plant in vitro studies, have been presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CE:

capillary electrophoresis

EI:

electron impact

GC:

gas chromatography

HPLC:

high performance liquid chromatography

HRMS:

high resolution mass spectrometry

LC:

liquid chromatography

LLE:

liquid-liquid extraction

MAE:

microwave-assisted extraction

MS:

mass spectrometry

NMR:

nuclear magnetic resonance

RI:

retention index

SPE:

solid phase extraction

SPME:

solid phase microextraction

TOF:

time of flight

UPLC:

ultrahigh performance liquid chromatography

UV:

ultraviolet

References

  1. Kopka J, Fernie A, WeckwerthW GG, Stitt M (2004) Metabolite profiling in plant biology: platforms and destinations. Genome Biol 5:109. doi:10.1186/gb-2004-5-6-109

    Article  Google Scholar 

  2. Berkov S, Mutafova B, Christen P (2014) Molecular biodiversity and recent analytical developments: a marriage of convenience. Biotechnol Adv 32:1102–1110. doi:10.1016/j.biotechadv.2014.04.005

    Article  CAS  Google Scholar 

  3. Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey R, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161. doi:10.1038/81137

    Article  CAS  Google Scholar 

  4. Luedemann A, Strassburg K, Erban A, Kopka J (2008) TagFinder for the quantitative analysis of gas chromatography – mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics 24(5):732–737. doi:10.1093/bioinformatics/btn023

    Article  CAS  Google Scholar 

  5. Georgiev V, Ivanov I, Berkov S, Pavlov A (2011) Alkaloids biosynthesis by Pancratium maritimum L. shoots in liquid culture. Acta Physiol Plant 33:927–933. doi:10.1007/s11738-010-0622-7

    Article  CAS  Google Scholar 

  6. Mahmud I, Thapaliya M, Boroujerdi A, Chowdhury K (2014) NMR-based metabolomics study of the biochemical relationship between sugarcane callus tissues and their respective nutrient culture media. Anal Bioanal Chem 406:5997–6005. doi:10.1007/s00216-014-8002-6

    Article  CAS  Google Scholar 

  7. Talaty N, Takáts Z, Cooks RG (2005) Rapid in situ detection of alkaloids in plant tissue under ambient conditions using desorption electrospray ionization. Analyst 130:1624–1633. doi:10.1039/b511161g

    Article  CAS  Google Scholar 

  8. Wu W et al (2007) Alkaloid profiling in crude and processed Strychnos nux-vomica seeds by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. J Pharm Biomed Anal 45:430–436. doi:10.1016/j.jpba.2007.06.031

    Article  CAS  Google Scholar 

  9. Feng C-H, Lu C-Y (2009) A new matrix for analyzing low molecular mass compounds and its application for determination of carcinogenic areca alkaloids by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Anal Chim Acta 649:230–235. doi:10.1016/j.aca.2009.07.039

    Article  CAS  Google Scholar 

  10. Ratcliffe R, Roscher A (1998) Prospects for in vivo NMR methods in xenobiotic research in plants. Biodegradation 9:411–422

    Article  CAS  Google Scholar 

  11. Pina E, Silva D, Teixeira S, Coppede J, Furlan M, França S, Lopes N, Pereira A, Lopes A (2016) Mevalonate-derived quinonemethide triterpenoid from in vitro roots of Peritassa laevigata and their localization in root tissue by MALDI imaging. Sci Rep 6:22627. doi:10.1038/srep22627

    Article  CAS  Google Scholar 

  12. Muzquiz M (2000) Separation of alkaloids by gas chromatography. In: Wilson ID, Adlard ER, Poole CF, Cooke M (eds) Encyclopedia of separation science. Academic, San Diego, pp 1938–1949

    Chapter  Google Scholar 

  13. Bekhechi C, Atik Bekkara F, Consiglio D, Bighelli A, Tomi F (2001) Infraspecific chemical variability of the leaf essential oils of Juniperus phoenicea Var. turbinata from Portugal. Chem Biodivers 9:2742–2753. doi:10.1002/cbdv.201200028

    Article  Google Scholar 

  14. Christen P, Bieri S, Berkov S (2013) Methods of analysis: tropane alkaloids from plant origin. In: Ramawat KG, Merillon JM (eds) Handbook of natural products. Springer, Berlin/Heidelberg, pp 1009–1048. doi:10.1007/978-3-642-22144-6_35

    Chapter  Google Scholar 

  15. Farag M, Huhman D, Lei Z, Sumner L (2007) Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC–UV–ESI–MS and GC–MS. Phytochemistry 68:342–354. doi:10.1016/j.phytochem.2006.10.023

    Article  CAS  Google Scholar 

  16. Chapagain B, Zeev W (2008) Metabolite profiling of saponins in Balanites aegyptiaca plant tissues using LC (RI)-ESI/MS and MALDI-TOF/MS. Metabolomics 4:357–366. doi:10.1007/s11306-008-0129-z

    Article  CAS  Google Scholar 

  17. Moco S et al (2006) A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol 141:1205–1218. doi:10.1104/pp.106.078428

    Article  CAS  Google Scholar 

  18. The lipid library (http://lipidlibrary.aocs.org/Analysis/content.cfm?ItemNumber=39230)

  19. Vuckovic D (2012) Current trends and challenges in sample preparation for global metabolimcs using liquid chromatography-mass spectrometry. Anal Bioanal Chem 403:1523–14.8. doi:10.1007/s00216-012-6039-y

    Article  CAS  Google Scholar 

  20. Bojko B, Cudjoe E, Gomez-Rios GA, Gorynski K, Jiang R, Reyes-Garces N, Risticevic S, Silva EAS, Togunde O, Vuckovic D, Pawliszyn J (2012) SPME – Quo vadis? Anal Chim Acta 750:132–151. doi:10.1016/j.aca.2012.06.052

    Article  CAS  Google Scholar 

  21. Ouyang G, Vuckovic D, Pawliszyn J (2011) Nondestructive sampling of living systems using in vivo solid-phase microextraction. Chem Rev:2784–2814. doi:10.1021/cr100203t

  22. Ilias Y, Bieri S, Christen P, Veuthey J-L (2006) Evaluation of solid-phase microextraction desorption parameters for fast GC analysis of cocaine in Coca leaves. J Chromatogr Sci 44:394–398

    Article  CAS  Google Scholar 

  23. Roessner U, Wagner C, Kopka J, Trethewey R, Willmitzer L (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. Plant J 23:131–142. doi:10.1046/j.1365-313x.2000.00774.x

    Article  CAS  Google Scholar 

  24. Broeckling C, Huhman D, Farag M, Smith J, May G, Mendes P, Dixon R, Sumner L (2005) Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J Exp Bot 56:323–336. doi:10.1093/jxb/eri058

    Article  CAS  Google Scholar 

  25. Villas-Bôas S, Smart K, Sivakumaran S, Lane G (2011) Alkylation or silylation for analysis of amino and non-amino organic acids by GC-MS? Metabolites 1:3–20. doi:10.3390/metabo1010003

    Article  Google Scholar 

  26. Xu X, van Lammeren A, Vermeer E, Vreugdenhil D (1998) The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol 117:575–584. doi:10.1104/pp.117.2.575

    Article  CAS  Google Scholar 

  27. Doppler M, Kluger B, Bueschl C, Schneider C, Krska R, Delcambre H, Lemmens M, Schuhmacher R (2016) Stable isotope-assisted evaluation of different extraction solvents for untargeted metabolomics of plants. Int J Mol Sci 17:1017. doi:10.3390/ijms17071017

    Article  Google Scholar 

  28. Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry 69:112–146. doi:10.1016/j.phytochem.2007.06.032

    Article  CAS  Google Scholar 

  29. Berkov B, KasabovaN PD, Tonkov S (2017) Metabolic and chemotaxonomical studies in some Geum (Rosaceae) species. Phytol Balcanica 23:7–16

    Google Scholar 

  30. Affonso VR, Bizzo HR, Lage CL, Sato A (2009) Influence of growth regulators in biomass production and volatile profile of in vitro plantlets of Thymus vulgaris L. J Agric Food Chem 57:6392–6395. doi:10.1021/jf900816c

    Article  CAS  Google Scholar 

  31. Kvitvang HF, Kristiansen KA, Lien SK, Bruheim P (2014) Quantitative analysis of amino and organic acids by methyl chloroformate derivatization and GC-MS/MS analysis. Methods Mol Biol 1198:137–145. doi:10.1007/978-1-4939-1258-2_10

    Article  CAS  Google Scholar 

  32. Medeiros B, Simoneit B (2007) Analysis of sugars in environmental samples by gas chromatography-mass spectrometry. J Chromatogr A 1141:271–278. doi:10.1016/j.chroma.2006.12.017

    Article  CAS  Google Scholar 

  33. Berkov S, Pavlov A, Georgiev V, Weber J, Bley T, Viladomat F, Bastida J, Codina C ((2010) Changes in apolar metabolites during in vitro organogenesis of Pancratium maritimum. Plant Physiol Biochem 48:827–835. doi:10.1016/j.plaphy.2010.07.002

    Article  CAS  Google Scholar 

  34. Schulze B, Lauchli R, Sonwa M, Schmidt A, Boland W (2005) Profiling of structurally labile oxylipins in plants by in situ derivatization with pentafluorobenzyl hydroxylamine. Anal Biochem 348:269–283. doi:10.1016/j.ab.2005.10.021

    Article  Google Scholar 

  35. López S, Bastida J, Viladomat F, Codina C (2002) Solid-phase extraction and reversed-phase high-performance liquid chromatography of the five major alkaloids in Narcissus confusus. Phytochem Anal 13:311–315. doi:10.1002/pca.660

    Article  Google Scholar 

  36. Pavlov A, Berkov S, Courot E, Gocheva T, Tuneva D, Pandova B, Georgiev M, Georgiev V, Yanev S, Burrus M, Ilieva M (2007) Galanthamine production by Leucojum aestivum in vitro systems. Process Biochem 42:734–739. doi:10.1016/j.procbio.2006.12.006

    Article  CAS  Google Scholar 

  37. Berkov S, Bastida J, Viladomat F, Codina C (2008) Analysis of galanthamine type alkaloids by CGC-MS in plant extracts. Phytochem Anal 19:285–293. doi:10.1002/pca.1028

    Article  CAS  Google Scholar 

  38. Berkov S, Bastida J, Viladomat F, Codina C (2011) Development and validation of a GC-MS method for rapid determination of galanthamine in Leucojum aestivum and Narcissus Ssp.: a metabolomic approach. Talanta 83:1455–1465. doi:10.1016/j.talanta.2010.11.029

    Article  CAS  Google Scholar 

  39. Schwender J, Ohlrogge JB (2002) Probing in vivo metabolism by stable isotope labeling of storage lipids and proteins in developing Brassica napus embryos. Plant Physiol 130:347–361. doi:10.1104/pp.004275

    Article  CAS  Google Scholar 

  40. Sawai S, Ohyama K, Yasumoto S, Seki H, Sakuma T, Yamamoto T, Takebayashi Y, Kojima M, Sakakibara H, Aoki T, Muranaka T, Saito K, Umemotog N (2014) Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 26:3763–3774. doi:10.1105/tpc.114.130096

    Article  CAS  Google Scholar 

  41. Gas-Pascual E, Berna A, Bach TJ, Schaller H (2014) Plant oxidosqualene metabolism: cycloartenol synthase–dependent sterol biosynthesis in Nicotiana benthamiana. PLoS One 9(10):e109156. doi:10.1371/journal.pone.0109156

    Article  Google Scholar 

  42. Nehela Y, Hijaz F, Elzaawely AA, El-Zahaby HM, Killiny N (2016) Phytohormone profiling of the sweet orange (Citrus sinensis (L.) Osbeck) leaves and roots using GC-MS-based method. J Plant Physiol 199:12–17. doi:10.1016/j.jplph.2016.04.005

    Article  CAS  Google Scholar 

  43. Lin L, Luo S, Luan T, Wang X, Zou S (2013) Determination of phytohormones in plant extracts using in-matrix ethyl chloroformate derivatization and DLLME–GC–MS. LCGC Eur 26:310–324

    Google Scholar 

  44. Khoddami A, Wilkes M, Roberts T (2013) Review techniques for analysis of plant phenolic compounds. Molecules 18:2328–2375. doi:10.3390/molecules18022328

    Article  CAS  Google Scholar 

  45. Rohloff J (2015) Analysis of phenolic and cyclic compounds in plants using derivatization techniques in combination with GC-MS-based metabolite profiling. Molecules 20:3431–3462. doi:10.3390/molecules20023431

    Article  CAS  Google Scholar 

  46. Proestos C, Komaitis M (2013) Analysis of naturally occurring phenolic compounds in aromatic plants by RP-HPLC coupled to diode array detector (DAD) and GC-MS after silylation. Foods 2:90–99. doi:10.3390/foods2010090

    Article  Google Scholar 

  47. Fiehn O (2008) Extending the breadth of metabolite profiling by gas chromatography coupled to mass spectrometry. TrAC Trends Anal Chem 27:261–269. doi:10.1016/j.trac.2008.01.007

    Article  CAS  Google Scholar 

  48. Nappo M, Berkov S, Codina C, Avila C, Messina P, Zupo V, Bastida J (2009) Metabolite profiling of the benthic diatom Cocconeis scutellum by GC-MS. J Appl Phycol 21:295–306. doi:10.1007/s10811-008-9367-8

    Article  CAS  Google Scholar 

  49. Vinaixa M, Schymanski E, Neumann S, Navarro M, Salek R, Yanes O (2016) Mass spectral databases for LC/MS and GC/MS-based metabolomics: state of the field and future prospects. TrAC Trends Anal Chem 78:23–35. doi:10.1016/j.trac.2015.09.005

    Article  CAS  Google Scholar 

  50. Andrys D, Adaszyńska-Skwirzyńska M, Kulpa D (2017) Jasmonic acid changes the composition of essential oil isolated from narrow-leaved lavender propagated in in vitro cultures. Nat Prod Res 19:1–6. doi:10.1080/14786419.2017.1309533

    Google Scholar 

  51. Torras-Claveria L, Berkov S, Jáuregui O, Caujapé J, Viladomat F, Codina C, Bastida J (2010) Metabolic profiling of bioactive Pancratium canariense extracts by GC-MS. Phytochem Anal 21:80–88. doi:10.1002/pca.1158

    Article  CAS  Google Scholar 

  52. Doerk-Schmitz K, Witte L, Alfermann W (1993) Tropane alkaloid patterns in plants and hairy roots of Hyoscyamus albus. Phytochemistry 35:107–110. doi:10.1016/S0031-9422(00)90517-X

    Article  Google Scholar 

  53. Berkov S, Viladomat F, Codina C, Suárez S, Ravelo A, Bastida J (2012) GC-MS of amaryllidaceous galanthamine-type alkaloids. J Mass Spectrom 47:1065–1073. doi:10.1002/jms.3059

    Article  CAS  Google Scholar 

  54. Kopka J (2006) Current challenges and developments in GC–MS based metabolite profiling technology. J Biotechnol 124:312–322. doi:10.1016/j.jbiotec.2005.12.012

    Article  CAS  Google Scholar 

  55. Berkov S, Bastida J, Tsvetkova R, Viladomat F, Codina C (2009) Alkaloids of Sternbergia colchiciflora. Z Naturforsch 64c:311–316

    Google Scholar 

  56. Steinfath M, Groth D, Lisec J, Selbig J (2008) Metabolite profile analysis: from raw data to regression and classification. Physiol Plant 132:150–161. doi:10.1111/j.1399-3054.2007.01006.x

    Article  CAS  Google Scholar 

  57. Worley B, Powers R (2013) Multivariate analysis in Metabolomics. Curr Metabolomics 1:92–107. doi:10.2174/2213235X11301010092

    CAS  Google Scholar 

  58. Skrzypek Z, Wysokińska H (2003) Sterols and triterpenes in cell culture of Hyssopus officinalis L. Z Naturforsch 58c:308–312

    Google Scholar 

  59. López MG, Sánchez-Mendoza IR, Ochoa-Alejo N (1999) Compartive study of volatile components and fatty acids of plants and in vitro cultures of parsley (Petroselinum crispum (mill) nym ex hill). J Agric Food Chem 47:3292–3296. doi:10.1021/jf981159m

    Article  Google Scholar 

  60. Abdelkader MS, Lockwood GB (2011) Volatile oils from the plant and hairy root cultures of Ageratum conyzoides L. Nat Prod Res 25:909–917. doi:10.1080/14786419.2010.531724

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Strahil Berkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Berkov, S., Georgieva, L., Sidjimova, B., Nikolova, M. (2017). Metabolite Profiling of In Vitro Plant Systems. In: Pavlov, A., Bley, T. (eds) Bioprocessing of Plant In Vitro Systems. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-32004-5_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32004-5_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32004-5

  • Online ISBN: 978-3-319-32004-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics