Skip to main content

Thermal Considerations with Tissue Electroporation

Handbook of Thermal Science and Engineering

Abstract

Electroporation is an energy‐directed therapeutic that relies on the application of pulsed electric fields to increase the transmembrane potential of a cell above a critical value, destabilizing the lipid bilayer of the cellular membrane and increasing cell tissue permeability. For years, researchers have used this phenomenon to assist the transport of macromolecules that typically are unable to penetrate the cell membrane with the intent of avoiding cell necrosis or irreversible electroporation. More recently, however, irreversible electroporation is proven to be a successful option for the treatment of cancer. More specifically, the proper tuning of pulse parameters has allowed for a nonthermally damaging targeted treatment of unresectable tumors. Pretreatment planning is implemented to moderate the associated thermal effects with the electroporation of biological tissue. However, the overall size and volume of the ablation is a function of the electrode geometry, electrode spacing, voltage amplitude, pulse frequency, and pulse repetition. Many researchers are motivated to maintain tissue temperature below a thermally damaging threshold while expanding the range of treatment and increasing ablation dimensions. Thermal mitigation strategies, including the installation of active cooling channels and phase change materials within electrodes, have the potential to allow the delivery of more energy to the tissue at a thermally safe temperature, ultimately resulting in larger ablation volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abidor IG, Arakelyan VB, Chernomordik LV, Chizmadzhev YA, Pastushenko VF, Tarasevich MP (1979) Electric breakdown of bilayer lipid membranes. I. The main experimental facts and their qualitative discussion. J Electroanal Chem 104(C):37–52. doi:10.1016/S0022-0728(79)81006-2

    Article  Google Scholar 

  • Al-Sakere B, André F, Bernat C, Connault E, Opolon P, Davalos RV, Rubinsky B, Mir LM (2007) Tumor ablation with irreversible electroporation. PLoS One 2(11):1–8. doi:10.1371/journal.pone.0001135

    Article  Google Scholar 

  • Arena CB, Mahajan RL, Rylander MN, Davalos RV (2013) An experimental and numerical investigation of phase change electrodes for therapeutic irreversible electroporation. J Biomech Eng 135(11):111009. doi:10.1115/1.4025334

    Article  Google Scholar 

  • Arena CB, Mahajan RL, Rylander MN, Davalos RV (2012) Towards the development of latent heat storage electrodes for electroporation-based therapies. Appl Phys Lett 101(8):1–5. doi:10.1063/1.4747332

    Article  Google Scholar 

  • Bao N, Le TT, Cheng J-X, Chang L (2010) Microfluidic electroporation of tumor and blood cells: observation of nucleus expansion and implications on selective analysis and purging of circulating tumor cells. Integr Biol (Camb) 2(2–3):113–120. doi:10.1039/b919820b

    Article  Google Scholar 

  • Becker SM, Kuznetsov AV (2007a) Numerical assessment of thermal response associated with in vivo skin electroporation: the importance of the composite skin model. J Biomech Eng 129:330–340. doi:10.1115/1.2720910

    Article  Google Scholar 

  • Becker SM, Kuznetsov AV (2007b) Thermal damage reduction associated with in vivo skin electroporation: a numerical investigation justifying aggressive pre-cooling. Int J Heat Mass Transf 50(1–2):105–116. doi:10.1016/j.ijheatmasstransfer.2006.06.030

    Article  MATH  Google Scholar 

  • Belehradek M, Domenge C, Luboinski B, Orlowski S, Belehradek J, Mir LM (1993) Electrochemotherapy, a new antitumor treatment: first clinical phase I-II trial. Cancer 72(12):3694–3700. doi:10.1002/1097-0142(19931215)72:12<3694::AID-CNCR2820721222>3.0.CO;2-2

    Article  Google Scholar 

  • Bernat C, André F, Connault E, Opolon P, Davalos RV, Mir LM (2007) A study of the immunological response to tumor ablation with irreversible electroporation. Technol Cancer Res Treat 6(4):301–306

    Article  Google Scholar 

  • Cadossi R, Ronchetti M, Cadossi M (2014) Locally enhanced chemotherapy by electroporation: clinical experiences and perspective of use of electrochemotherapy. Future Oncol 10(5):877–890. doi:10.2217/fon.13.235

    Article  Google Scholar 

  • Cemazar M, Tamzali Y, Sersa G, Tozon N, Mir LM, Miklavcic D, Lowe R, Teissie J (2008) Electrochemotherapy in veterinary oncology. J Vet Intern Med 22(4):826–831. doi:10.1111/j.1939-1676.2008.0117.x

    Article  Google Scholar 

  • Chen N, Schoenbach KH, Kolb JF, James Swanson R, Garner AL, Yang J, Joshi RP, Beebe SJ (2004) Leukemic cell intracellular responses to nanosecond electric fields. Biochem Biophys Res Commun 317(2):421–427. doi:10.1016/j.bbrc.2004.03.063

    Article  Google Scholar 

  • Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng R 87:1–57. doi:10.1016/j.mser.2014.10.001. Elsevier B.V

    Article  Google Scholar 

  • Daniels CS, Rubinsky B (2011) Temperature modulation of electric fields in biological matter. PLoS One 6(6):1–9. doi:10.1371/journal.pone.0020877

    Article  Google Scholar 

  • Davalos RV, Mir LM, Rubinsky B (2005) Tissue ablation with irreversible electroporation. Ann Biomed Eng 33(2):223–231. doi:10.1007/s10439-005-8981-8

    Article  Google Scholar 

  • Davalos RV, Rubinsky B (2008) Temperature considerations during irreversible electroporation. Int J Heat Mass Transf 51(23–24):5617–5622. doi:10.1016/j.ijheatmasstransfer.2008.04.046. Elsevier Ltd

    Article  MATH  Google Scholar 

  • Davalos RV, Rubinsky B, Mir LM (2003) Theoretical analysis of the thermal effects during in vivo tissue electroporation. Bioelectrochemistry 61(1–2):99–107. doi:10.1016/j.bioelechem.2003.07.001

    Article  Google Scholar 

  • Davalos RV, Garcia PA, Edd JF (2010) Thermal aspects of irreversible electroporation. pp 123–154

    Google Scholar 

  • Deng Z-S, Liu J (2002) Analytical study on bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies. J Biomech Eng 124(6):638. doi:10.1115/1.1516810

    Article  Google Scholar 

  • Diller KR, Hayes LJ (1983) A finite element model of burn injury in blood-perfused skin. J Biomech Eng 105(3):300–307. doi:10.1115/1.3138423

    Article  Google Scholar 

  • Domenge C, Luboinski B, De Baere T, Schwaab G, Belehradek J Jr, Mir LM, Orlowski S (1996) Antitumor electrochemotherapy: new advances in the clinical protocol. Cancer 77(5):956–963

    Article  Google Scholar 

  • Duck FA (1990) Physical properties of tissues: a comprehensive reference book. Academic Press, San Diego

    Google Scholar 

  • Edd JF, Davalos RV (2007) Mathematical modeling of irreversible electroporation for treatment planning. Technol Cancer Res Treat 6(4):275–286. doi:10.1177/153303460700600403

    Article  Google Scholar 

  • Ellis TL, Garcia PA, Rossmeisl JH, Henao-Guerrero N, Robertson J, Davalos RV (2011) Nonthermal irreversible electroporation for intracranial surgical applications. Laboratory investigation. J Neurosurg 114(3):681–688. doi:10.3171/2010.5.JNS091448

    Article  Google Scholar 

  • Fok SC, Shen W, Tan FL (2010) Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks. Int J Therm Sci 49(1):109–117. doi:10.1016/j.ijthermalsci.2009.06.011. Elsevier Masson SAS

    Article  Google Scholar 

  • Frey W, White JA, Price RO, Blackmore PF, Joshi RP, Nuccitelli R, Beebe SJ, Schoenbach KH, Kolb JF (2006) Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophys J 90(10):3608–3615. doi:10.1529/biophysj.105.072777. Elsevier

    Article  Google Scholar 

  • Gallo S, Sen A, Hensen M, Hui SW (2002) Temperature-Dependent Electrical and Ultrastructural Characterizations of Porcine Skin upon Electroporation. Biophys J 82(1 Pt 1):109–119. doi:10.1016/S0006-3495(02)75378-2. Elsevier

    Article  Google Scholar 

  • Garcia PA, Rossmeisl JH Jr, Neal RE 2nd, Ellis TL, Davalos RV (2011) A parametric study delineating irreversible electroporation from thermal damage based on a minimally invasive intracranial procedure. Biomed Eng Online 10(April):34. doi:10.1186/1475-925X-10-34

    Article  Google Scholar 

  • Garcia P, Rossmeisl J, Robertson J, Ellis T, Davalos R (2009) Irreversible electroporation for intracranial surgery: a pilot study in a canine model. Neuro-Oncology 11(5):588

    Google Scholar 

  • Garcia P, Rossmeisl J, Neal R, Ellis T, Olson J, Henao-Guerrero N, Robertson J, Davalos R (2010) Intracranial nonthermal irreversible electroporation: in vivo analysis. J Membr Biol 236(1):127–136. doi:10.1007/s00232-010-9284-z

    Article  Google Scholar 

  • Garon EB, David S, Thomas Vernier P, Tang T, Sun Y, Marcu L, Gundersen MA, Phillip Koeffler H (2007) In vitro and in vivo evaluation and a case report of intense nanosecond pulsed electric field as a local therapy for human malignancies. Int J Cancer 121(3):675–682. doi:10.1002/ijc.22723

    Article  Google Scholar 

  • Gascoyne PR, Vykoukal J (2002) Particle separation by dielectrophoresis. Electrophoresis 23(13):1973–1983. doi:10.1002/1522-2683(200207)23

    Article  Google Scholar 

  • Ge H, Liu J (2012) Phase change effect of low melting point metal for an automatic cooling of USB flash memory. Front Energy 6(3):207–209. doi:10.1007/s11708-012-0204-z

    Article  Google Scholar 

  • Gehl J (2003) Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand 177(4):437–447. doi:10.1046/j.1365-201X.2003.01093.x

    Article  Google Scholar 

  • Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI (1988) Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim Biophys Acta 940:275–287

    Article  Google Scholar 

  • Golberg A, Yarmush ML (2013) Nonthermal irreversible electroporation: fundamentals, applications, and challenges. IEEE Trans Biomed Eng 60(3):707–714. doi:10.1109/TBME.2013.2238672

    Article  Google Scholar 

  • Golzio M, Mazzolini L, Ledoux A, Paganin A, Izard M, Hellaudais L, Bieth A et al (2007) In vivo gene silencing in solid tumors by targeted electrically mediated siRNA delivery. Gene Ther 14(9):752–759. doi:10.1038/sj.gt.3302920

    Article  Google Scholar 

  • Granot Y, Rubinsky B (2009) Mass transfer model for drug delivery in tissue cells with reversible electroporation. Int J Heat Mass Transf 5(6):611–618. doi:10.1039/b417245k.Effects

    MATH  Google Scholar 

  • Guo Y, Zhang Y, Klein R, Nijm GM, Sahakian AV, Omary RA, Yang GY, Larson AC (2010) Irreversible electroporation therapy in the liver: longitudinal efficacy studies in a rat model of hepatocellular carcinoma. Cancer Res 70(4):1555–1563. doi:10.1158/0008-5472.CAN-09-3067

    Article  Google Scholar 

  • Hanna E, Zhang X, Woodlis J, Breau R, Suen J, Li S (2001) Intramusclar electroporation delivery of IL-12 gene for treatment of squamous cell carcinoma located at distant site. Cancer Gene Ther 8(3):151–157

    Article  Google Scholar 

  • Hasgall PA, Di Gennaro F, Baumgartner C, Neufeld E, Gosselin MC, Payne D, Klingenbock A, Kuster N (2015) IT’IS database for thermal and electromagnetic parameters of biological tissues, Version 3.0. doi:10.13099/VIP21000-03-0

  • Jiang C, Davalos RV, Bischof JC (2015) A review of basic to clinical studies of irreversible electroporation therapy. IEEE Trans Biomed Eng 62(1):4–20

    Article  Google Scholar 

  • Kandasamy R, Wang X-Q, Mujumdar AS (2007) Application of phase change materials in thermal management of electronics. Appl Therm Eng 27(17–18):2822–2832. doi:10.1016/j.applthermaleng.2006.12.013

    Article  Google Scholar 

  • Karlessi T, Santamouris M, Synnefa A, Assimakopoulos D, Didaskalopoulos P, Apostolakis K (2011) Development and testing of PCM doped cool colored coatings to mitigate urban Heat Island and Cool Buildings. Build Environ 46(3):570–576. doi:10.1016/j.buildenv.2010.09.003. Elsevier Ltd

    Article  Google Scholar 

  • Kos B, Zupanic A, Kotnik T, Snoj M, Sersa G, Miklavcic D (2010) Robustness of treatment planning for electrochemotherapy of deep-seated tumors. J Membr Biol 236(1):147–153. doi:10.1007/s00232-010-9274-1

    Article  Google Scholar 

  • Kuznik F, David D, Johannes K, Roux JJ (2011) A review on phase change materials integrated in building walls. Renew Sust Energ Rev 15(1):379–391. doi:10.1016/j.rser.2010.08.019

    Article  Google Scholar 

  • Li S, Xia X, Zhang X, Suen J (2002) Regression of tumors by IFN-alpha electroporation gene therapy and analysis of the responsible genes by cDNA array. Gene Ther 9(6):390–397. doi:10.1038/sj.gt.3301645

    Article  Google Scholar 

  • Long G, Shires PK, Plescia D, Beebe SJ, Kolb JF, Schoenbach KH (2011) Targeted tissue ablation with nanosecond pulses. IEEE Trans Biomed Eng 58(8):2161–2167. doi:10.1109/TBME.2011.2113183

    Article  Google Scholar 

  • Mesalhy O, Lafdi K, Elgafy A (2006) Carbon foam matrices saturated with PCM for thermal protection purposes. Carbon 44(10):2080–2088. doi:10.1016/j.carbon.2005.12.019

    Article  Google Scholar 

  • Miklavcic D, Basu S, Hassenplug JC, Kramer DB, Xu S, Kesselheim AS (2014) Electrochemotherapy: from the drawing board into medical practice. Biomed Eng Online 13(1):29. doi:10.1186/1475-925X-13-29

    Article  Google Scholar 

  • Miklavcic D, Sel D, Cukjati D, Batiuskaite D, Slivnik T, Mir L (2004) Sequential finite element model of tissue electropermeabilisation. Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society. IEEE Engineering in Medicine and Biology Society Conference, vol 5(5):3551–3554. doi:10.1109/IEMBS.2004.1403998

  • Miklavcic D, Snoj M, Zupanic A, Kos B, Cemazar M, Kropivnik M, Bracko M, Pecnik T, Gadzijev E, Sersa G (2010) Towards treatment planning and treatment of deep-seated solid tumors by electrochemotherapy. Biomed Eng Online 9:10. doi:10.1186/1475-925X-9-10

    Article  Google Scholar 

  • Mondieig D, Rajabalee F, Laprie A, Oonk HAJ, Calvet T, Cuevas-Diarte MA (2003) Protection of temperature sensitive biomedical products using molecular alloys as phase change material. Transfus Apher Sci 28(2):143–148. doi:10.1016/S1473-0502(03)00016-8

    Article  Google Scholar 

  • Neal RE, Smith RL, Kavnoudias H, Rosenfeldt F, Ruchong O, McLean CA, Davalos RV, Thomson KR (2013) The effects of metallic implants on electroporation therapies: feasibility of irreversible electroporation for brachytherapy salvage. Cardiovasc Intervent Radiol 36(6):1638–1645. doi:10.1007/s00270-013-0704-1

    Article  Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1(7):841–845. doi:10.1385/1-59259-409-3:55

    Google Scholar 

  • Nuccitelli R, Tran K, Sheikh S, Athos B, Kreis M, Nuccitelli P (2010) Optimized nanosecond pulsed electric field therapy can cause murine malignant melanomas to self-destruct with a single treatment. Int J Cancer 127(7):1727–1736. doi:10.1002/ijc.25364

    Article  Google Scholar 

  • Osterman E, Tyagi VV, Butala V, Rahim NA, Stritih U (2012) Review of PCM based cooling technologies for buildings. Energ Buildings 49:37–49. doi:10.1016/j.enbuild.2012.03.022. Elsevier B.V.

    Article  Google Scholar 

  • Pavliha D, Kos B, Županič A, Marčan M, Serša G, Miklavčič D (2012) Patient-specific treatment planning of electrochemotherapy: procedure design and possible pitfalls. Bioelectrochemistry 87:265–273. doi:10.1016/j.bioelechem.2012.01.007

    Article  Google Scholar 

  • Pearce JA (2009) Relationship between Arrhenius models of thermal damage and the CEM 43 thermal dose. Proc SPIE 7181(2):1–15. doi:10.1117/12.807999

    MathSciNet  Google Scholar 

  • Pennes H (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 85:5–34. doi:9714612

    Google Scholar 

  • Pliquett U (1999) Mechanistic studies of molecular transdermal transport due to skin electroporation. Adv Drug Deliv Rev 35(1):41–60. doi:10.1016/S0169-409X(98)00062-3

    Article  Google Scholar 

  • Pliquett U, Gusbeth C, Nuccitelli R (2008) A Propagating Heat Wave Model of Skin Electroporation. J Theor Biol 251(2):195–201. doi:10.1016/j.jtbi.2007.11.031

    Article  Google Scholar 

  • Prakash J, Garg HP, Datta G (1985) A solar water heater with a built-in latent heat storage. Energy Convers Manag 25(1):51–56. doi:10.1016/0196-8904(85)90069-X

    Article  Google Scholar 

  • Roman KK, O’Brien T, Alvey JB, Woo OJ (2016) Simulating the effects of cool roof and PCM (Phase Change Materials) based roof to mitigate UHI (Urban Heat Island) in prominent US cities. Energy 96:103–117. doi:10.1016/j.energy.2015.11.082. Elsevier Ltd

    Article  Google Scholar 

  • Rubinsky J, Onik G, Mikus P, Rubinsky B (2008) Optimal parameters for the destruction of prostate cancer using irreversible electroporation. J Urol 180(6):2668–2674. doi:10.1016/j.juro.2008.08.003. American Urological Association

    Article  Google Scholar 

  • Sano MB, Neal RE, Garcia PA, Gerber D, Robertson J, Davalos RV (2010) Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion. Biomed Eng Online 9(1):1–16. doi:10.1186/1475-925X-9-83. BioMed Central Ltd: 83

    Article  Google Scholar 

  • Scheffer HJ, Vogel JA, Van Den Bos W, Neal RE, Van Lienden KP, Besselink MGH, Van Gemert MJC et al (2016) The influence of a metal stent on the distribution of thermal energy during irreversible electroporation. PLoS One 11(2):1–13. doi:10.1371/journal.pone.0148457

    Article  Google Scholar 

  • Shafiee H, Garcia P, Davalos RV (2009) A preliminary study to delineate irreversible electroporation from thermal damage using the Arrhenius equation. J Biomech Eng 131(7):074509. doi:10.1115/1.3143027

    Article  Google Scholar 

  • Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sust Energ Rev 13(2):318–345. doi:10.1016/j.rser.2007.10.005

    Article  Google Scholar 

  • Sheeran PS, Luois SH, Mullin LB, Matsunaga TO, Dayton PA (2012) Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons. Biomaterials 33(11):3262–3269. doi:10.1016/j.biomaterials.2012.01.021. Elsevier Ltd

    Article  Google Scholar 

  • Shim H, McCullough EA, Jones BW (2001) Using phase change materials in clothing. Text Res J 71(6):495–502. doi:10.1177/004051750107100605

    Article  Google Scholar 

  • Stacey M, Stickley J, Fox P, Statler V, Schoenbach K, Beebe SJ, Buescher S (2003) Differential effects in cells exposed to ultra-short, high intensity electric fields: cell survival, DNA damage, and cell cycle analysis. Mutat Res 542(1–2):65–75. doi:10.1016/j.mrgentox.2003.08.006

    Article  Google Scholar 

  • Tracy CR, Kabbani W, Cadeddu JA (2011) Irreversible Electroporation (IRE): a novel method for renal tissue ablation. BJU Int 107(12):1982–1987. doi:10.1111/j.1464-410X.2010.09797.x

    Article  Google Scholar 

  • Tropea BI, Lee RC (1992) Thermal injury kinetics in electrical trauma. J Biomech Eng 114(2):241–250. doi:10.1115/1.2891378

    Article  Google Scholar 

  • Vernier PT, Sun Y, Gundersen MA (2006) Nanoelectropulse-driven membrane perturbation and small molecule permeabilization. BMC Cell Biol 7(1):37. doi:10.1186/1471-2121-7-37

    Article  Google Scholar 

  • Wandel A, Ben-David E, Said Ulusoy B, Neal R, Faruja M, Nissenbaum I, Gourovich S, Nahum Goldberg S (2016) Optimizing irreversible electroporation ablation with a bipolar electrode. J Vasc Interv Radiol 7:1–12. doi:10.1016/j.jvir.2016.06.001. Elsevier

    Google Scholar 

  • Weaver JC (1994) Molecular Basis for Cell Membrane Electroporation. Ann N Y Acad Sci 720(1):141–152. doi:10.1111/j.1749-6632.1994.tb30442.x

    Article  Google Scholar 

  • Weaver JC (1995) Electroporation in cells and tissues: a biophysical phenomenon due to electromagnetic fields ions medium. 30(1):205–221.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the NSF CAREER Award (CBET-1055913), the R21 Award from the National Cancer Institute of the National Institutes of Health (R21CA192042), and the Institute of Critical Technology and Applied Science at Virginia Tech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael V. Davalos .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

O’Brien, T.J., Arena, C.B., Davalos, R.V. (2017). Thermal Considerations with Tissue Electroporation. In: Kulacki, F. (eds) Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-32003-8_68-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32003-8_68-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32003-8

  • Online ISBN: 978-3-319-32003-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Thermal Considerations with Tissue Electroporation
    Published:
    17 October 2017

    DOI: https://doi.org/10.1007/978-3-319-32003-8_68-2

  2. Original

    Thermal Considerations with Tissue Electroporation
    Published:
    26 August 2017

    DOI: https://doi.org/10.1007/978-3-319-32003-8_68-1