Skip to main content

Flow Boiling in Tubes

  • Living reference work entry
  • First Online:
Handbook of Thermal Science and Engineering
  • 727 Accesses

Abstract

Flow boiling in tubes is a highly efficient heat transfer regime, which is used for thermal management in various engineered systems with high energy density, from power electronics to heat exchangers in power plants and nuclear reactors. Flow boiling can occur in different two-phase flow patterns under a wide range of flow conditions, including transient and developing flows. Thus, analysis of flow boiling in tubes is built upon a broad knowledge base on related processes in two-phase flow and heat transfer mechanisms that have been a subject of numerous experimental, theoretical, and computational investigations over many decades. The main quantities of interest for design, operation, and safety of such systems are boiling heat transfer and the limit of coolability associated with boiling crisis and burnout that occur at critical heat fluxes. This chapter provides an overview of a wide range of phenomena that govern heat transfer in flow boiling in tubes, highlighting the multiscale complexity of flow boiling. The main content of the chapter discusses approaches to modeling of flow boiling, including traditional one-dimensional models and an emerging class of multidimensional treatments. Associated issues, remaining uncertainties, and perspectives are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A :

(tube) cross-sectional area; interfacial area

d :

bubble diameter

c p :

heat capacity at constant pressure

c v :

heat capacity at constant volume

D :

tube inner diameter

e :

internal energy

f :

friction factor

f TP :

friction factor for two-phase flow

g :

gravitational acceleration

G :

mass flux

h :

enthalpy; heat transfer coefficient

k :

thermal conductivity; turbulent kinetic energy

p :

pressure

q :

heat flux

Q :

flow rate per unit periphery of the liquid film in annular flow

S :

slip ratio

t :

time

T :

temperature

u :

velocity

u gs :

gas superficial velocity

u ls :

liquid superficial velocity

v :

specific volume

x :

thermodynamic quality

z :

flow direction

α :

phasic fraction by volume

Γ:

interfacial mass change rate

δ :

film thickness

ε :

turbulent dissipation rate

θ :

angle

μ :

dynamic viscosity

ρ :

density

σ :

surface tension

ϕ :

representation of a general scalar quantity / contact angle

\( {\Phi}_{fo}^2 \) :

two-phase frictional multiplier

c :

convective heat transfer component

e :

evaporation heat transfer component

q :

quenching heat transfer component

t :

turbulence

b :

bubble

f :

g property difference between fluid and gas (both in saturation state)

g :

gas

i :

interface

l :

liquid

r :

relative motion

sat :

saturation state

sub :

subcooled state

sup :

superheat state

w :

wall

Nu :

Nusselt number (=hD/k)

Pr :

Prandtl number (=c p μ/k)

Re :

Reynolds number (=ρvD/μ)

Re b :

Bubble Reynolds number (=ρ l (v g  − v l )d/μ l )

We :

Weber number (=ρv 2 d/σ)

References

  • Aktinol E, Dhir VK (2012) Numerical simulation of nucleate boiling phenomenon coupled with thermal response of the solid. Microgravity Sci Technol 24(4):255–265

    Article  Google Scholar 

  • Anglart H, Nylund O, Kurul N, Podowski MZ (1997) CFD prediction of flow and phase distribution in fuel assemblies with spacers. Nucl Eng Des 177(1):215–228

    Article  Google Scholar 

  • Antal SP, Lahey RT, Flaherty JE (1991) Analysis of phase distribution in fully developed laminar bubbly two-phase flow. Int J Multiphase Flow 17(5):635–652

    Article  MATH  Google Scholar 

  • Bajorek S (2008). TRACE V5. 0 theory manual, field equations, solution methods and physical models. Technical report, United States Nuclear Regulatory Commission

    Google Scholar 

  • Basu N, Warrier GR, Dhir VK (2002) Onset of nucleate boiling and active nucleation site density during subcooled flow boiling. J Heat Transf 124(4):717

    Article  Google Scholar 

  • Bestion D (2010) Extension of CFD codes application to two-phase flow safety problems. Nucl Eng Technol 42(4):365–376

    Article  Google Scholar 

  • Bolotnov IA, Jansen KE, Drew DA, Oberai AA, Lahey RT, Podowski MZ (2011) Detached direct numerical simulations of turbulent two-phase bubbly channel flow. Int J Multiphase Flow 37(6):647–659

    Article  Google Scholar 

  • Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354

    Article  MathSciNet  MATH  Google Scholar 

  • Bromley LA (1950) Heat transfer in stable film boiling. Chem Eng Prog 46(5):221–228

    Google Scholar 

  • Butterworth D (1979) The correlation of cross-flow pressure drop data by means of the permeability concept. Technical report, UKAEA Atomic Energy Research Establishment, AERE-R9435

    Google Scholar 

  • Chen JC (1966) Correlation for boiling heat transfer to saturated fluids in convective flow. Ind EngChem Process Des Dev 5(3):322–329

    Article  Google Scholar 

  • Chisholm D (1973) Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels. Int J Heat Mass Transf 16(2):347–358

    Article  Google Scholar 

  • Chun J, Lee W, Park C, Lee U (2003) Development of the critical film thickness correlation for an advanced annular film mechanistic dryout model applicable to MARS code. Nucl Eng Des 223(3):315–328

    Article  Google Scholar 

  • Churchill SW, Churchill RU (1975) A comprehensive correlating equation for heat and component transfer by free convection. AICHE J 21(3):604–606

    Article  Google Scholar 

  • Cole R (1967) Bubble frequencies and departure volumes at subatmospheric pressures. AICHE J 13(4):779–783

    Article  MathSciNet  Google Scholar 

  • Cole R, Rohsenow WM (1969) Correlation of bubble departure diameters for boiling of saturated liquids. Chem Eng Prog Symp Ser 65(92):211–213

    Google Scholar 

  • Collier JG, Thome JR (1996) Convective boiling and condensation, 3rd edn. Clarendon Press, Oxford

    Google Scholar 

  • Cousins LB, Denton WT, Hewitt GF (1965) Liquid mass transfer in annular two-phase flow. In: Proceedings of the symposium on two-phase flow, Exeter

    Google Scholar 

  • Davis EJ, Anderson GH (1966) The incipience of nucleate boiling in forced convection flow. AICHE J 12(4):774–780

    Article  Google Scholar 

  • de Bertodano ML, Assad A, Beus S (1998) Entrainment rate of droplets in the ripple-annular regime for small vertical ducts. Nucl Sci Eng 129(1):72–80

    Article  Google Scholar 

  • Forster HK, Zuber N (1955) Dynamics of vapor bubbles and boiling heat transfer. AICHE J 1(4):531–535

    Article  Google Scholar 

  • Gosman AD, Lekakou C, Politis S, Issa RI, Looney MK (1992) Multidimensional modeling of turbulent two-phase flows in stirred vessels. AICHE J 38(12):1946–1956

    Article  Google Scholar 

  • Groeneveld DC (1973) Post-dryout heat transfer at reactor operating conditions. In: ANS topical meeting on water reactor safety, Salt Lack City

    Google Scholar 

  • Groeneveld DC, Cheng SC, Doan T (1986) The CHF look-up table, a simple and accurate method for predicting critical heat flux. Heat Transf Eng 7(1):46–62

    Article  Google Scholar 

  • Groeneveld DC et al (1996) The 1995 look-up table for critical heat flux in tubes. Nucl Eng Des 163(1):1–23

    Article  Google Scholar 

  • Groeneveld DC et al (2007) The 2006 CHF look-up table. Nucl Eng Des 237(15):1909–1922

    Article  Google Scholar 

  • Guo Y, Mishima K (2002) A non-equilibrium mechanistic heat transfer model for post-dryout dispersed flow regime. Exp Thermal Fluid Sci 26(6):861–869

    Article  Google Scholar 

  • Haramura Y, Katto Y (1983) A new hydrodynamic model of critical heat flux, applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids. Int J Heat Mass Transf 26(3):389–399

    Article  MATH  Google Scholar 

  • Hewitt G (1970) Annular two-phase flow. Pergamon, Oxford

    Google Scholar 

  • Hewitt GF, Govan AH (1990) Phenomenological modelling of non-equilibrium flows with phase change. Int J Heat Mass Transf 33(2):229–242

    Article  Google Scholar 

  • Hewitt GF, Kearsey HA, Pulling DJ (1965) Burnout and nucleation in climbing film flow. Int J Heat Mass Transf 8(5):793–814

    Article  Google Scholar 

  • Hibiki T, Ishii M (2002) Development of one-group interfacial area transport equation in bubbly flow systems. Int J Heat Mass Transf 45(11):2351–2372

    Article  MATH  Google Scholar 

  • Hibiki T, Ishii M (2003) Active nucleation site density in boiling systems. Int J Heat Mass Transf 46(14):2587–2601

    Article  MATH  Google Scholar 

  • Ishii M, Hibiki T (2010) Thermo-fluid dynamics of two-phase flow. Springer Science & Business Media, NewYork

    Google Scholar 

  • Ishii M, Chawla TC, Zuber N (1976) Constitutive equation for vapor drift velocity in two-phase annular flow. AICHE J 22(2):283–289

    Article  Google Scholar 

  • Jayatilleke CLV (1966) The influence of Prandtl number and surface roughness on the resistance of the laminar sub-layer to momentum and heat transfer. Ph.D. Thesis&nbsp, University of London

    Google Scholar 

  • Jens WH, Lottes PA (1951) Analysis of heat transfer, burnout, pressure drop and density date for high-pressure water. Technical Report, Argonne National Lab, ANL-4627

    Google Scholar 

  • Kaichiro M, Ishii M (1984) Flow regime transition criteria for upward two-phase flow in vertical tubes. Int J Heat Mass Transf 27(5):723–737

    Article  Google Scholar 

  • Kawahara A, Chung P, Kawaji M (2002) Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel. Int J Multiphase Flow 28(9):1411–1435

    Article  MATH  Google Scholar 

  • Kocamustafaogullari G (1983) Pressure dependence of bubble departure diameter for water. Int Commun Heat Mass Transf 10(6):501–509

    Article  Google Scholar 

  • Kocamustafaogullari G, Ishii M (1995) Foundation of the interfacial area transport equation and its closure relations. Int J Heat Mass Transf 38(3):481–493

    Article  MATH  Google Scholar 

  • Krepper E, Končar B, Egorov Y (2007) CFD modelling of subcooled boiling—concept, validation and application to fuel assembly design. Nucl Eng Des 237(7):716–731

    Article  Google Scholar 

  • Kurul N, Podowski MZ (1991) Multidimensional effects in forced convection subcooled boiling. In: Ninth international heat transfer conference

    Google Scholar 

  • Kutateladze SS (1961) Boiling heat transfer. Int J Heat Mass Transf 4:31–45

    Article  Google Scholar 

  • Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3(2):269–289

    Article  MATH  Google Scholar 

  • Lee CH, Mudawwar I (1988) A mechanistic critical heat flux model for subcooled flow boiling based on local bulk flow conditions. Int J Multiphase Flow 14(6):711–728

    Article  Google Scholar 

  • Lemmert M, Chawla JM (1977) Influence of flow velocity on surface boiling heat transfer coefficient. In: Hahne E, Grigull U (eds) Heat transfer in boiling. Academic Press and Hemisphere, New York

    Google Scholar 

  • Li H, Anglart H (2016) Prediction of dryout and post-dryout heat transfer using a two-phase CFD model. Int J Heat Mass Transf 99:839–850

    Article  Google Scholar 

  • Liu S, Masliyah JH (1993) Axially invariant laminar flow in helical pipes with a finite pitch. J Fluid Mech 251:315–353

    Article  MATH  Google Scholar 

  • Lockhart RW, Martinelli RC (1949) Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem Eng Prog 45(1):39–48

    Google Scholar 

  • Mimouni S, Baudry C, Guingo M, Lavieville J, Merigoux N, Mechitoua N (2016) Computational multi-fluid dynamics predictions of critical heat flux in boiling flow. Nucl Eng Des 299:28–36

    Article  Google Scholar 

  • Mulder W, Osher S, Sethian JA (1992) Computing interface motion in compressible gas dynamics. J Comput Phys 100(2):209–228

    Article  MathSciNet  MATH  Google Scholar 

  • Paleev II, Filippovich BS (1966) Phenomena of liquid transfer in two-phase dispersed annular flow. Int J Heat Mass Transf 9(10):1089–1093

    Article  Google Scholar 

  • Podowski RM, Drew DA, Lahey RT Jr, Podowski MZ (1997) A mechanistic model of the ebullition cycle in forced convection subcooled boiling. In: Eighth international topical meeting on nuclear reactor thermal-hydraulics, Kyoto

    Google Scholar 

  • Ransom VH et al (1982) RELAP5/MOD1 code manual volume 1: system models and numerical methods. Technical Report, U.S. Nuclear Regulatory Commission, NUREG/CR-1826

    Google Scholar 

  • Ranz WE, Marshall WR (1952) Evaporation from drops. Chem Eng Prog 48(3):141–146

    Google Scholar 

  • Rohsenow WM, Hartnett JP, Ganic EN (1998) Handbook of heat transfer fundamentals, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Rusche H (2003) Computational fluid dynamics of dispersed two-phase flows at high phase fractions. Ph.D. Thesis, Imperial College London

    Google Scholar 

  • Salko RK, Avramova M (2014) CTF theory manual. The Pennsylvania State University

    Google Scholar 

  • Sato Y, Niceno B (2015) A depletable micro-layer model for nucleate pool boiling. J Comput Phys 300:20–52

    Article  MathSciNet  MATH  Google Scholar 

  • Sato Y, Sekoguchi K (1975) Liquid velocity distribution in two-phase bubble flow. Int J Multiphase Flow 2(1):79–95

    Article  MATH  Google Scholar 

  • Scardovelli R, Zaleski S (2000) Analytical relations connecting linear interfaces and volume fractions in rectangular grids. J Comput Phys 164(1):228–237

    Article  MathSciNet  MATH  Google Scholar 

  • Schiller L, Naumann Z (1935) A drag coefficient correlation. Ver Deutsch Ing 77:318–320

    Google Scholar 

  • Smith SL (1969) Void fractions in two-phase flow: a correlation based upon an equal velocity head model. Proc Inst Mech Engrs 184(1):647–664

    Article  Google Scholar 

  • Steiner D, Taborek J (1992) Flow boiling heat transfer in vertical tubes correlated by an asymptotic model. Heat Transf Eng 13(2):43–69

    Article  Google Scholar 

  • Taitel Y, Dukler AE (1976) A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AICHE J 22(1):47–55

    Article  Google Scholar 

  • Taitel Y, Bornea D, Dukler AE (1980) Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. AICHE J 26(3):345–354

    Article  Google Scholar 

  • Theofanous TG, Dinh T (2006) High heat flux boiling and burnout as microphysical phenomena: mounting evidence and opportunities. Multiph Sci Technol 18(3):251–276

    Article  Google Scholar 

  • Theofanous TG, Tu JP, Dinh AT, Dinh T (2002) The boiling crisis phenomenon: part I: nucleation and nucleate boiling heat transfer. Exp Thermal Fluid Sci 26(6):775–792

    Article  Google Scholar 

  • Thom J, Walker WM, Fallon TA, Reising G (1965) Boiling in subcooled water during flow up heated tubes or annuli. In: Symposium on boiling heat transfer in steam generating units and heat exchangers, Manchester

    Google Scholar 

  • Tolubinsky VI, Konstanchuk DM (1972) The rate of vapour-bubble growth in boiling of subcooled water. Heat Transf-Sov Res 4(6):7–12

    Google Scholar 

  • Tomiyama A (1998) Struggle with computational bubble dynamics. Multiph Sci Technol 10(4):369–405

    Article  Google Scholar 

  • Tong LS, Tang YS (1997) Boiling heat transfer and two-phase flow, 2nd edn. Taylor & Francis, London

    Google Scholar 

  • Tong LS, Young JD (1974). Phenomenological transition and film boiling heat transfer correlation, Tokyo

    Google Scholar 

  • Tryggvason G et al (2001) A front-tracking method for the computations of multiphase flow. J Comput Phys 169(2):708–759

    Article  MathSciNet  MATH  Google Scholar 

  • Wallis GB (1969) One-dimensional two-phase flow. McGraw-Hill, New York

    Google Scholar 

  • Wang CH, Dhir VK (1993) Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. J Heat Transf 115(3):659–669

    Article  Google Scholar 

  • Weisman J, Pei BS (1983) Prediction of critical heat flux in flow boiling at low qualities. Int J Heat Mass Transf 26(10):1463–1477

    Article  Google Scholar 

  • Whalley PB (1977) The calculation of dryout in a rod bundle. Int J Multiphase Flow 3(6):501–515

    Article  MATH  Google Scholar 

  • Whalley PB, Hewitt GF, Hutchinson P (1973) Experimental wave and entrainment measurements in vertical annular two-phase flow. Technical Report

    Google Scholar 

  • Wolfert K, Burwell MJ, Enix D (1978) Non-equilibrium mass transfer between liquid and vapor phases during depressurization processes in transient two-phase flow. In: Proceedings of 2nd CSNI specialists meeting, Paris

    Google Scholar 

  • Wu Q, Kim S, Ishii M, Beus SG (1998) One-group interfacial area transport in vertical bubbly flow. Int J Heat Mass Transf 41(8):1103–1112

    Article  MATH  Google Scholar 

  • Yang SR, Kim RH (1988) A mathematical model of the pool boiling nucleation site density in terms of the surface characteristics. Int J Heat Mass Transf 31(6):1127–1135

    Article  Google Scholar 

  • Yao W, Morel C (2004) Volumetric interfacial area prediction in upward bubbly two-phase flow. Int J Heat Mass Transf 47(2):307–328

    Article  MATH  Google Scholar 

  • Zeng LZ, Klausner JF, Bernhard DM, Mei R (1993a) A unified model for the prediction of bubble detachment diameters in boiling systems—II. Flow boiling. Int J Heat Mass Transf 36(9):2271–2279

    Article  Google Scholar 

  • Zeng LZ, Klausner JF, Mei R (1993b) A unified model for the prediction of bubble detachment diameters in boiling systems—I. Pool boiling. Int J Heat Mass Transf 36(9):2261–2270

    Article  Google Scholar 

  • Zhao L, Rezkallah KS (1993) Gas-liquid flow patterns at microgravity conditions. Int J Multiphase Flow 19(5):751–763

    Article  MATH  Google Scholar 

  • Zivi SM (1964) Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production. J Heat Transf 86(2):247–251

    Article  Google Scholar 

  • Zuber N (1958) On the stability of boiling heat transfer. Trans Am Soc Mech Engrs 80:711–720

    Google Scholar 

  • Zuber N, Findlay J (1965) Average volumetric concentration in two-phase flow systems. J Heat Transf 87(4):453–468

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Liu, Y., Dinh, N. (2017). Flow Boiling in Tubes. In: Kulacki, F. (eds) Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-32003-8_47-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32003-8_47-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32003-8

  • Online ISBN: 978-3-319-32003-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics