Skip to main content

Fundamental Equations for Two-Phase Flow in Tubes

  • Living reference work entry
  • First Online:
Handbook of Thermal Science and Engineering
  • 838 Accesses

Abstract

Two-phase flow of gas and liquid is often encountered in the design and operation of heat exchangers, oil/gas transport lines, chemical and bioreactors, and mass transfer equipment. The two-phase pressure drop governs the pumping requirement in forced-circulation systems, while the pressure drop dictates the circulation rate and, hence, various system parameters in natural-circulation systems. All three components of pressure drop (gravitational, frictional, and accelerational) are dependent on void fraction or quality, so the design of energy systems and their performance are highly dependent on accurate predictions of both the two-phase pressure drop and void fraction. In this chapter, basic parameters are defined first, followed by descriptions of two-phase flow patterns, flow pattern maps and transition criteria, the conservation equations used in two-phase flow analyses, and the correlations and models available for predicting void fraction and pressure drop in simple flow channel geometries such as circular and noncircular tubes. In particular, advanced two-phase flow models including multidimensional two-fluid models and the constitutive relations for interfacial transfer terms are presented. Examples of two-dimensional and one-dimensional two-fluid models applied to predict radial void fraction distributions in bubbly flow and interfacial wave characteristics in inverted annular flow, respectively, are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Antal SP, Lahey RT Jr, Flaherty JE (1991) Analysis of phase distribution in fully developed laminar bubbly two-phase flow. Int J Multiphase Flow 17(5):635–652

    Article  MATH  Google Scholar 

  • Armand AA (1946) Resistance to two-phase flow in horizontal tubes. Izv VTI 15(1):16–23

    Google Scholar 

  • Baker O (1954) Simultaneous flow of oil and gas. Oil Gas J 53:185–195

    Google Scholar 

  • Banerjee S, Chan AMC (1980) Separated flow models – I analysis of the averaged and local instantaneous formulations. Int J Multiphase Flow 6:1–24

    Article  MATH  Google Scholar 

  • Bankoff SG (1960) A variable density single-fluid model for two-phase flow with particular reference to steam-water flow. J Heat Transf 82:265–272

    Article  Google Scholar 

  • Baroczy CJ (1965) A systematic correlation of for two-phase pressure drop. Chem Eng Prog Symp Ser 62(44):232–249

    Google Scholar 

  • Basset AB(1888) On the motion of a sphere in a viscous liquid. Philos Trans Royal Soc London, Ser A Math Phys Sci 179:43–63; also A treatise on hydrodynamics, 1961, Dover, New York, Chap. 22

    Google Scholar 

  • Beattie DRH, Whalley PB (1982) A simple two-phase frictional pressure drop calculation method. Int J Multiphase Flow 8:83–87

    Article  Google Scholar 

  • Bergles AE, Roos JP, Bourne JG (1968) Investigation of boiling flow regimes and critical heat flux. NYO-3304-13

    Google Scholar 

  • Cheng L, Ribatski G, Thome JR (2008) Two-phase flow patterns and flow-pattern maps: fundamentals and applications. Appl Mech Rev 61(5):050802-050802-28. doi:10.1115/1.2955990

    Article  Google Scholar 

  • Chichitti A, Lombardi C, Silvestri M, Soldaini G, Zavattarelli R (1960) Two-phase cooling experiments – pressure drop, heat transfer and burnout measurement. Energ Nucl 7(6):407–425

    Google Scholar 

  • Chisholm D (1973) Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels. Int J Heat Mass Transf 16:347–358

    Article  Google Scholar 

  • Chisholm D, Laird ADK (1958) Two-phase flow in rough tubes. Trans ASME 80(2):276–286

    Google Scholar 

  • Coddington P, Macian R (2002) A study of the performance of void fraction correlations used in the context of drift-flux two-phase flow models. Nucl Eng Design 215:199–216

    Article  Google Scholar 

  • Collier JG (1972) Convective boiling and condensation. McGraw Hill, London

    Google Scholar 

  • Collier JG, Thome JR (1994) Convective boiling and condensation. Oxford University Press, New York

    Google Scholar 

  • De Jarlais G (1983) An experimental study of inverted annular flow hydrodynamics utilizing an adiabatic simulation. NUREG/CR-3339, ANL-83-44

    Google Scholar 

  • Drew DA, Lahey RT Jr (1987) The virtual mass and lift force on a sphere in rotating and straining inviscid flow. Int J Multiphase Flow 13:113–121

    Article  MATH  Google Scholar 

  • Dukler AE, Taitel Y (1977) Flow regime transitions for vertical upward gas liquid flow: a preliminary approach through physical modeling. Progress Report No. 1, NUREG-0162

    Google Scholar 

  • Dukler AE, Wicks M, Cleveland RG (1964) Frictional pressure drop in two-phase flow: an approach through similarity analysis. AICHE J 10:44–51

    Article  Google Scholar 

  • Faghri A, Zhang Y (2006) Transport phenomena in multiphase systems. Elsevier, Burlington

    Google Scholar 

  • Franca F, Lahey RT (1992) The use of drift-flux techniques for the analysis of horizontal two-phase flows. Int J Multiphase Flow 18(6):787–801

    Article  MATH  Google Scholar 

  • Friedel L (1977) Momentum exchange and pressure drop. In: Whalley PB (ed) Two-phase flows and heat transfer. Oxford University Press, Oxford

    Google Scholar 

  • Friedel L (1979) Improved friction drop correlations for horizontal and vertical two-phase pipe flow. Paper E2 presented at the European Two-phase Flow Group Meeting, Ispra

    Google Scholar 

  • Friedel L, Diener R (1998) Reproductive accuracy of selected void fraction correlations for horizontal and vertical up flow. Forsch im Ingenieurwes 64:87–97

    Article  Google Scholar 

  • Godbole PV, Tang CC, Ghajar AJ (2011) Comparison of void fraction correlations for different flow patterns in upward vertical two-phase flow. Heat Transf Eng 32(10):843–860

    Article  Google Scholar 

  • Govier GW, Aziz K (1972) The flow of complex mixtures in pipes. Van Nostrand Reinhold, New York

    Google Scholar 

  • Hasan AR, Kabir CS (1992) Two-phase flow in vertical and inclined annuli. Int J Multiphase Flow 18(2):279–293

    Article  MATH  Google Scholar 

  • Hewitt GF (1982) Flow regimes. “Pressure drop” and “void fraction”, sections 2.1–2.3. In: Hetsroni G (ed) Handbook of multiphase systems. McGraw-Hill, New York

    Google Scholar 

  • Hewitt GF, Roberts DN (1969) Studies of two-phase flow patterns by simultaneous X-ray and flash photography. UKAEA Report AERE-M2159

    Google Scholar 

  • Hubbard MG, Dukler AE (1966) The characterization of flow regimes for horizontal two-phase flow. In: Saad MA, Miller JA (eds) Proceedings of the 1966 heat transfer and fluid mechanics institute, Stanford University Press, Palo Alto, pp 100–121

    Google Scholar 

  • Idzinga W, Todreas N, Bowring R (1977) An assessment of two-phase pressure drop correlations for steam-water systems. Int J Multiphase Flow 3:401–413

    Article  Google Scholar 

  • Ishii M (1975) Thermo-fluid dynamic theory of two-phase flow. Eyrolles, Paris

    MATH  Google Scholar 

  • Ishii M (1977) One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. ANL Report ANL-77-47

    Google Scholar 

  • Ishii M, Chawla TC (1979) Local drag laws in dispersed two-phase flow. ANL-79-105, NUREG/CR-1230

    Google Scholar 

  • Ishii M, De Jarlais G (1986) Flow regime transition and interfacial characteristics of inverted annular flow. Nucl Eng Des 95:171–184

    Article  Google Scholar 

  • Ishii M, Hibiki T (2006) Thermo-fluid dynamics of two-phase flow. Springer US. 10.1007/978–0–387-29187-1. http://www.springer.com/us/book/9780387283210

  • Ishii M, Mishima K (1980) Study of two-fluid model and interfacial area. Argonne National Laboratory Report, ANL-80-111, NUREG/CR-1873

    Google Scholar 

  • Ishii M, Mishima K (1984) Two-fluid model and hydrodynamic constitutive relations. Nucl Eng Des 82:107–126

    Article  Google Scholar 

  • Ishii M, Zuber N (1979) Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AICHE J 25:843–855

    Article  Google Scholar 

  • Ishii M, Kim S, Uhle J (2002) Interfacial area transport equation: model development and benchmark experiments. Int J Heat Mass Transf 45(15):3111–3123

    Article  MATH  Google Scholar 

  • Ishii M, Kim S, Kelly J (2005) Development of interfacial area transport equation. Nucl Eng Technol 37(6):525–536

    Google Scholar 

  • Jones OC, Zuber N (1975) The interrelation between void fraction fluctuations and flow patterns in two-phase flow. Int J Multiphase Flow 2:273–306

    Article  Google Scholar 

  • Kawaji M, Banerjee S (1987) Application of a multifield model to reflooding of a hot vertical tube, part 1. Model structure and interfacial phenomena. J Heat Transf 109(1):204–211

    Article  Google Scholar 

  • Kawaji M, Anoda Y, Nakamura H, Tasaka T (1987) Phase and velocity distributions and holdup in high-pressure steam/water stratified flow in a large diameter horizontal pipe. Int J Multiphase Flow 13(2):145–159

    Article  Google Scholar 

  • Kim S, Ishii M, Sun X, Beus SG (2002) Interfacial area transport and evaluation of source terms for confined air water bubbly flow. Nucl Eng Des 219(1):61–65

    Article  Google Scholar 

  • Kocamustafaogullari G, Ishii M (1995) Foundation of the interfacial area transport equation and its closure relation. Int J Heat Mass Transf 38(3):481–493

    Article  MATH  Google Scholar 

  • Koizumi Y, Yamamoto N, Tasaka K (1990) Air/water two-phase flow in a horizontal large-diameter pipe (1st Report, Flow regime). Trans. JSME 56(532, B):3745–3749

    Google Scholar 

  • Lahey RT Jr, Lopez de Bertodano M, Jones OC Jr (1993) Phase distribution incomplex geometry conduits. Nucl Eng Des 141:117–201

    Google Scholar 

  • Lamb H (1932) Hydrodynamics, 6th edn. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  • Liu TJ, Bankoff SG (1993) Structure of air-water bubbly flow in a vertical pipe – II. Void fraction, bubble velocity and bubble size distribution. Int J Heat Mass Transf 36:1061–1072

    Article  Google Scholar 

  • Lockhart RW, Martinelli RC (1949) Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem Eng Prog 45:39–48

    Google Scholar 

  • Mandhane JM, Gregory GA, Aziz K (1974) Critical evaluation of holdup prediction methods for gas–liquid flow in horizontal pipes. J Pet Technol 27:1017–1026

    Article  Google Scholar 

  • Martinelli RC, Nelson DB (1948) Prediction of pressure drop during forced-circulation boiling of water. Trans ASME 70:695–702

    Google Scholar 

  • McAdams WH, Wood WK, Bryan RL (1942) Vaporization inside horizontal tubes: II, benzene-oil mixtures. Trans ASME 64:193–200

    Google Scholar 

  • Mei R, Adrian RJ, Hanratty J (1991) Particle dispersion in isotropic turbulence under stokes drag and Basset force with gravitational settling. J Fluid Mech 225:481–495

    Article  MATH  Google Scholar 

  • Michaelides EE (1997) Review-the transient equation of motion for particles, bubbles and droplets. J Fluids Eng 119:233–247

    Article  Google Scholar 

  • Mishima K, Ishii M (1984) Flow regime transition criteria for upward two-phase flow in vertical tubes. Int J Heat Mass Transf 27(5):723–737

    Article  Google Scholar 

  • Müller-Steinhagen H, Heck K (1986) A simple friction pressure correlation for two-phase flow in pipes. Chem Eng Process 20:297–308

    Article  Google Scholar 

  • Nakoryakov VE, Kashinskii ON, Koz’myenko BK, Goryelik RS (1986) Study of upward bubbly flow at low liquid velocities. Izv Sib otdel Akad nauk SSSR 16:15–20

    Google Scholar 

  • Nigmatulin RI (1979) Spatial averaging in the mechanics of heterogeneous and dispersed systems. Int J Multiphase Flow 4:353–385

    Article  MATH  Google Scholar 

  • Noghrehkar GR, Kawaji M, Chan AMC (1999) Investigation of two-phase flow regimes in tube bundles under cross-flow conditions. Int J Multiphase Flow 25:857–874

    Article  MATH  Google Scholar 

  • Oshinowo T, Charles ME (1974) Vertical two-phase flow: part 11. Holdup and pressure drop. Can J Chem Eng 56:438–448

    Article  Google Scholar 

  • Owens WL (1961) Two-phase pressure gradient. ASME Int Develop Heat Transf Part II 363–368

    Google Scholar 

  • Rouhani SZ, Axelsson E (1970) Calculation of void volume fraction in the sub cooled and quality boiling regions. Int J Heat Mass Transf 13:383–393

    Article  Google Scholar 

  • Rouhani SZ, Sohal MS (1983) Two-phase flow patterns: a review of research results. Prog Nucl Energy 11(3):219–259

    Article  Google Scholar 

  • Saadatomi M, Sato Y, Saruwatari S (1982) Two-phase flow in vertical non-circular channels. Int J Multiphase Flow 8(6):641–655

    Article  Google Scholar 

  • Sadatomi M, Kawaji M, Lorencez CM, Chang T (1993) Prediction of liquid level distribution in horizontal gas-liquid stratified flows with interfacial level gradient. Int J Multiphase Flow 19(6):987–997

    Article  MATH  Google Scholar 

  • Sato Y, Sadatomi M (1986) Two-phase flow in vertical non-circular channels. In: Cheremisinoff NP (ed) Encyclopedia of fluid mechanics, vol 3. Gulf Publishing, Houston, pp 651–664

    Google Scholar 

  • Serizawa A, Kataoka I, Michiyoshi I (1975) Turbulence structure of air-water bubbly flow, part II: local properties. Int J Multiphase Flow 2:235–246

    Article  Google Scholar 

  • Stuhmiller JH (1977) The influence of interfacial pressure on the character of two-phase flow model equations. Int J Multiphase Flow 3:551–560

    Article  MATH  Google Scholar 

  • Taitel Y, Dukler AE (1976a) A model for predicting flow regime transition in horizontal and near horizontal gas-liquid flow. AICHE J 22:47–55

    Article  Google Scholar 

  • Taitel Y, Dukler AE (1976b) A theoretical approach to the Lockhart-Martinelli correlation for stratified flow. Int J Multiphase Flow 2:591–595

    Article  Google Scholar 

  • Taitel Y, Bornea D, Dukler AE (1980) Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. AICHE J 26(3):345–354

    Article  Google Scholar 

  • Thom JRS (1964) Prediction of pressure drop during forced circulation boiling of water. Int J Heat Mass Transf 7:709–724

    Article  Google Scholar 

  • Tomiyama A, Kataoka I, Zun I, Sakaguchi T (1998) Drag coefficients of single bubbles under normal and micro gravity conditions. JSME Int J, Ser B 41(2):472–479

    Article  Google Scholar 

  • Tomiyama A, Tamai H, Zun I, Hosokawa S (2002) Transverse migration of single bubbles in simple shear flows. Chem Eng Sci 57:1849–1858

    Article  Google Scholar 

  • Wallis GB (1969) One-dimensional two-phase flow. McGraw-Hill, New York

    Google Scholar 

  • Wang X, Sun X (2010) Three-dimensional simulations of air–water bubbly flows. Int J Multiphase Flow 36:882–890

    Article  Google Scholar 

  • Weisman J, Duncan D, Gibson J, Crawford T (1979) Effects of fluid properties and pipe diameter on two-phase flow patterns in horizontal lines. Int J Multiphase Flow 5:437–462

    Article  Google Scholar 

  • Woldesemayat MA, Ghajar AJ (2007) Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes. Int J Multiphase Flow 33:347–370

    Article  Google Scholar 

  • Wu Q, Kim S, Ishii M, Beus SG (1998) One-group interfacial area transport in vertical bubbly flow. Int J Heat Mass Transf 41(8–9):1103–1112

    Article  MATH  Google Scholar 

  • Zuber N (1964) On the dispersed flow in the laminar flow regime. Chem Eng Sci 19:897–917

    Article  Google Scholar 

  • Zuber N, Findlay JA (1965) Average volumetric concentration in two-phase flow systems. J Heat Transf 87:453–468

    Article  Google Scholar 

  • Zun I (1980) The transverse migration of bubbles influenced by walls in vertical bubbly flow. Int J Multiphase Flow 6:583–588

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Kawaji .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Kawaji, M. (2017). Fundamental Equations for Two-Phase Flow in Tubes. In: Kulacki, F. (eds) Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-32003-8_46-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32003-8_46-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32003-8

  • Online ISBN: 978-3-319-32003-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics