Skip to main content

Extraventricular Intracisternal Obstructive Hydrocephalus

  • Living reference work entry
  • First Online:
  • 158 Accesses

Abstract

Hydrocephalus is a complex condition involving mechanical or functional impairment of cerebrospinal fluid flow. While most common causes of obstructive hydrocephalus occur within the ventricular system, scarring and inflammation within the cisterns of the subarachnoid space can lead to obstruction of CSF flow and subsequently diffuse ventricular enlargement. Establishing the diagnosis and etiology of hydrocephalus due to extraventricular intracisternal obstruction has distinct implications for the management options.

This is a preview of subscription content, log in via an institution.

References

  • Cohen A (2012) Endoscopic exploration of the basal cisterns: to boldly go where no one has gone before. World Neurosurg 77:646–647

    Article  PubMed  Google Scholar 

  • Daniel GB, Edwards DF, Harvey RC et al (1995) Communicating hydrocephalus in dogs with congenital ciliary dysfunction. Dev Neurosci 17:230–235

    Article  CAS  PubMed  Google Scholar 

  • Davis LE (1981) Communicating hydrocephalus in newborn hamsters and cats following vaccinia virus infection. J Neurosurg 54:767–772

    Article  CAS  PubMed  Google Scholar 

  • Del Bigio MR, Bruni JE (1987) Cerebral water content in silicone oil-induced hydrocephalic rabbits. Pediatr Neurosci 13:72–77

    Article  PubMed  Google Scholar 

  • Dincer A, Kohan S, Ozek MM (2009) Is all “communicating” hydrocephalus really communicating? Prospective study on the value of 3D-constructive interference in steady state sequence at 3T. AJNR 30(10):1898–906

    Article  CAS  PubMed  Google Scholar 

  • Diggs J, Price AC, Burt AM (1986) Early changes in experimental hydrocephalus. Investig Radiol 21:118–121

    Article  CAS  Google Scholar 

  • Edvinsson L, West KA (1971) Relation between intracranial pressure and ventricular size at various stages of experimental hydrocephalus. Acta Neurol Scand 47:451–457

    Article  CAS  PubMed  Google Scholar 

  • Figaji AA, Fieggen AG (2013) Endoscopic challenges and applications in tuberculous meningitis. World Neurosurg 79(2):S24–e9

    Article  PubMed  Google Scholar 

  • Fiori MG, Sharer LR, Lowndes HE (1985) Communicating hydrocephalus in rodents treated with beta, beta'-iminodipropionitrile (IDPN). Acta Neuropathol 65:209–216

    Article  CAS  PubMed  Google Scholar 

  • Hochwald GM, Lux WE Jr et al (1972) Experimental hydrocephalus: changes in CSF dynamics as a function of time. Arch Neurol 26:120–129

    Article  CAS  PubMed  Google Scholar 

  • Johanson CE, Szmydynger-Chodobska J, Chodobski A (1999) Altered formation and bulk absorption of cerebrospinal fluid in FGF-2-induced hydrocephalus. Am J Phys 277:R263–R271

    CAS  Google Scholar 

  • Kehler U, Gliemroth J (2003) Extraventricular intracisternal obstructive hydrocephalus-a hypothesis to explain successful 3rd ventriculostomy in communicating hydrocephalus. Pediatr Neurosurg 38(2):98–101

    Article  CAS  PubMed  Google Scholar 

  • Klarica M, Oreskovic D, Bozic B et al (2009) New experimental model of acute aqueductal blockade in cats: effects on cerebrospinal fluid pressure and the size of brain ventricles. Neuroscience 158:1397–1405

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Zhu XL (2007) Cranial arachnoid membranes: some aspects of microsurgical anatomy. Clin Anat 20:502–511

    Article  PubMed  Google Scholar 

  • Moinuddin SM, Tada T (2000) Study of cerebrospinal fluid flow dynamics in TGF-beta 1 induced chronic hydrocephalic mice. Neurol Res 22:215–222

    Article  CAS  PubMed  Google Scholar 

  • Padayachy LC, Kilborn T, Carrara H et al (2015) Change in optic nerve sheath diameter as a radiological marker of outcome from endoscopic third ventriculostomy in children. Childs Nerv Syst 31(5):721–728

    Article  PubMed  Google Scholar 

  • Raimondi AJ (1994) A unifying theory for the definition and classification of hydrocephalus. Childs Nerv Syst 10:2–12

    Article  CAS  PubMed  Google Scholar 

  • Rangel-Castilla L, Hwang SH, White AC et al (2012) Neuroendoscopic diagnosis of central nervous system histoplasmosis with basilar Arachnoiditis. World Neurosurg 77(2):399.e9–399.e13

    Article  Google Scholar 

  • Rekate HL (2008) The definition and classification of hydrocephalus: a personal recommendation to stimulate debate. Cerebrospinal Fluid Res 5:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Rekate LH (2009) A contemporary definition and classification of hydrocephalus. Semin Pediatr Neurol 16:9–15

    Article  PubMed  Google Scholar 

  • Oertel JM, Mondorf Y, Schroeder HW, Gaab MR (2010) Endoscopic diagnosis and treatment of far distal obstructive hydrocephalus. Acta Neurochir 152(2):229–40

    Article  PubMed  Google Scholar 

  • Orešković D, Klarica M (2010) The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev 64(2):241–62

    Article  PubMed  Google Scholar 

  • Singhal A, Yang MM, Sargent MA et al (2013) Does optic nerve sheath diameter on MRI decrease with clinically improved pediatric hydrocephalus? Childs Nerv Syst 29(2):269–274

    Article  PubMed  Google Scholar 

  • Torres-Corzo J, Vinas-Rios JM, Sanchez-Aguilar M et al (2012) Transventricular Neuroendoscopic exploration and biopsy of the basal cisterns in patients with basal meningitis and hydrocephalus. World Neurosurg 77(5/6):762–771

    Article  PubMed  Google Scholar 

  • Tully HM, Dobyns WB (2014) Infantile hydrocephalus: a review of epidemiology, classification and causes. Eur J Med Genet 57(8):359–368

    Article  PubMed  PubMed Central  Google Scholar 

  • Warf BC, Kulkarni AV (2010) Intraoperative assessment of cerebral aqueduct patency and cisternal scarring: impact on success of endoscopic third ventriculostomy in 403 African children. J Neurosurg Pediatr 5:204–209

    Article  PubMed  Google Scholar 

  • Wiesmann M, Koedel U, Bruckmann H, Pfister HW (2002) Experimental bacterial meningitis in rats: demonstration of hydrocephalus and meningeal enhancement by magnetic resonance imaging. Neurol Res 24:307–310

    Article  PubMed  Google Scholar 

  • Wolinsky JS, Barnes BD, Margolis T (1974) Diagnostic tests in normal pressure hydrocephalus. Neurology 23:706–713

    Article  Google Scholar 

  • Yaşargil MG (1984) Subarachnoid cisterns. In: Yaşargil MG (ed) Microneurosurgery, vol 1. Thieme, Stuttgart, pp 5–53

    Google Scholar 

  • Yaşargil G, Kasdaglis M, Jain K et al (1976) Anatomical observations of the subarachnoid cisterns of the brain during surgery. J Neurosurg 44(3):298–302

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Fieggen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Padayachy, L., Fieggen, G. (2018). Extraventricular Intracisternal Obstructive Hydrocephalus. In: Cinalli, G., Ozek, M., Sainte-Rose, C. (eds) Pediatric Hydrocephalus. Springer, Cham. https://doi.org/10.1007/978-3-319-31889-9_61-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31889-9_61-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31889-9

  • Online ISBN: 978-3-319-31889-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics