Anticipation in Robotics

Living reference work entry


In this chapter, we introduce anticipatory robotic systems. We show how intelligent robots can anticipate the future, by outlining two broad approaches: the first shows how robots can use anticipation to learn how to control their own bodies and the second shows how robots can use anticipation to predict the behavior of themselves interacting with others, and hence demonstrate improved safety, or simple ‘ethical’ behaviors. Both approaches are illustrated with experimental results from recent work. We show that, with practical realizable embedded artificial intelligence, robots can indeed predict the future and that this is a technology with significant potential for improved safety and human-robot interaction.


Anticipation Robotics Internal simulations Predictive models Sensorimotor learning Multi-agent systems Developmental robotics Theory of mind Robot safety Robot ethics Expectations Forward models Exploration Tool use Sensory attenuation Human-robot interaction 


  1. Asimov, I. (1950). I, Robot. New York: Gnome Press.Google Scholar
  2. Baranes, A., & Oudeyer, P.-Y. (2013). Active learning of inverse models with intrinsically motivated goal exploration in robots. Robotics and Autonomous Systems, 61, 49–73.CrossRefGoogle Scholar
  3. Baron-Cohen, S. (1997). Mindblindness: An essay on autism and theory of mind. Boston: MIT Press.Google Scholar
  4. Bechtle, S., Schillaci, G., & Hafner, V. V. (2016). On the sense of agency and of object permanence in robots. In Proceedings of the 6th joint IEEE international conference on development and learning and on epigenetic robotics, Paris, pp. 166–171.Google Scholar
  5. Bjerknes, J. D., & Winfield, A. F. T. (2013). On fault tolerance and scalability of swarm robotic systems, distributed autonomous robotic systems (pp. 431–444). Heidelberg: Springer.CrossRefGoogle Scholar
  6. Blakemore, S. J., Wolpert, D., & Frith, C. (2000). Why can’t you tickle yourself? Neuroreport, 11, 11–16.CrossRefGoogle Scholar
  7. Blum, C. (2015). Self-organization in networks of mobile sensor nodes. PhD thesis, Mathematisch-Naturwissenschaftliche Fakultät, Humboldt-Universität zu Berlin.Google Scholar
  8. Blum, C., Winfield, A. F. and Hafner, V. V. (2018). Simulation-based internal models for safer robots. Frontiers in Robotics and AI, 4, 74.
  9. Bongard, J., Zykov, V., & Lipson, H. (2006). Resilient machines through continuous self-modeling. Science, 314(5802), 1118–1121.CrossRefGoogle Scholar
  10. Braitenberg, V. (1984). Vehicles: Experiments in synthetic psychology. Cambridge, MA: MIT Press.Google Scholar
  11. Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47(1–3), 139–159.CrossRefGoogle Scholar
  12. Carpenter, M., & Call, J. (2006). The question of ‘what to imitate’: Inferring goals and intentions. In C. L. Nehaniv & D. Kirstin (Eds.), Imitation and social learning in robots, humans and animals behavioural, social and communicative dimensions (pp. 135–152). Cambridge: Cambridge University Press.Google Scholar
  13. Carruthers, P., & Smith, P. K. (1996). Theories of theories of mind. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  14. Clark, A. (2016). Surfing uncertainty – Prediction, action, and the embodied mind. New York: Oxford University Press.CrossRefGoogle Scholar
  15. Copete, J. L., Nagai, Y., & Asada, M. (2016). Motor development facilitates the prediction of others’ actions through sensorimotor predictive learning. In Proceedings of the 6th IEEE international conference on development and learning and on epigenetic robotics, 19–22 Sept 2016.Google Scholar
  16. Dautenhahn, K., & Nehaniv, C. (2002). Challenges in building robots that imitate people (pp. 363–390). Cambridge: MIT Press.Google Scholar
  17. Dearden, A., & Demiris, Y. (2005). Learning forward models for robots. In Proceedings of the 19th international joint conference on artificial intelligence, IJCAI’05, pp. 1440–1445.Google Scholar
  18. Dennett, D. (1995). Darwin’s dangerous idea. London: Penguin.Google Scholar
  19. Dennis, L. A., Fisher, M., Webster, M., & Bordini, R. H. (2012). Model checking agent programming languages. Automated Software Engineering, 19(1), 5–63.CrossRefGoogle Scholar
  20. Diamond, A., Knight, R., Devereux, D., & Holland, O. (2012). Anthropomimetic robots: Concept, construction and modelling. International Journal of Advanced Robotic Systems, 9, 209.CrossRefGoogle Scholar
  21. Dixon, C., Fisher, M., & Bolotov, A. (2002). Resolution in a logic of rational agency. Artificial Intelligence, 139(1), 47–89.CrossRefGoogle Scholar
  22. Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., O’Doherty, J., & Pezzulo, G. (2016). Active inference and learning. Neuroscience and Biobehavioral Reviews, 68, 862–879.CrossRefGoogle Scholar
  23. Gariépy, J. F., Watson, K. K., Du, E., Xie, D. L., Erb, J., Amasino, D., & Platt, M. L. (2014). Social learning in humans and other animals. Frontiers in Neuroscience, 8, 58.Google Scholar
  24. Holland, J. (1992). Complex adaptive systems. Boston: Daedalus.Google Scholar
  25. Holland, O. (Ed.). (2003). Machine consciousness. Thorverton: Imprint Academic.Google Scholar
  26. Isidori, A., Marconi, L., & Serrani, A. (2003). Fundamentals of internal-model based control theory. In Robust autonomous guidance, advances in industrial control (pp. 1–58). London: Springer.CrossRefGoogle Scholar
  27. Jacobi, N., Husbands, P., & Harvey, I. (1995). Noise and the reality gap: The use of simulation in evolutionary robotics. In Proceedings of the third European conference on advances in artificial life, pp. 704–720. Springer.Google Scholar
  28. Jones, S., Studley, M., & Winfield, A. F. (2014). Mobile GPGPU acceleration of embodied robot simulation. In C. J. Headleand, W. J. Teahan, & L. Ap Cenydd, (Eds.) (2014), Artificial life and intelligent agents: First international symposium, ALIA 2014, Bangor, 5–6 Nov 2014. Revised Selected Papers (519), pp. 97–109. Springer.Google Scholar
  29. Kaplan, F., & Hafner, V. V. (2006). The challenges of joint attention. Interaction Studies, 7(2), 135–169.CrossRefGoogle Scholar
  30. Koenig, N., & Howard, A. (2004). Design and use paradigms for gazebo, an open-source multi-robot simulator. In Proceedings 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS), Vol. 3, pp. 2149–2154. IEEE.Google Scholar
  31. Krahe, R., & Maler, L. (2014). Neural maps in the electrosensory system of weakly electric fish. Current Opinion in Neurobiology, 24, 13–21. ISSN 0959-4388.CrossRefGoogle Scholar
  32. Liu, W., & Winfield, A. F. (2011). Open-hardware e-puck Linux extension board for experimental swarm robotics research. Microprocessors and Microsystems, 35(1), 60–67.CrossRefGoogle Scholar
  33. Marques, H., & Holland, O. (2009). Architectures for functional imagination. Neurocomputing, 72(4–6), 743–759.CrossRefGoogle Scholar
  34. Marques, H. G., Jantsch, M., Wittmeier, S., Holland, O., Alessandro, C., Diamond, A., Lungarella, M., & Knight, R. (2010). ECCE1: The first of a series of anthropo-mimetic musculoskeletal upper torsos. In 10th IEEE-RAS international conference on humanoid robots, pp. 391–396. IEEE.Google Scholar
  35. Maturana, H. R., & Varela, F. J. (1987). The tree of knowledge: The biological roots of human understanding. Boston: New Science Library/Shambhala Publications.Google Scholar
  36. Michel, O. (2004). Webots: Professional Mobile Robot Simulation, International Journal of Advanced Robotic Systems, 1(1), pages 39–42.Google Scholar
  37. Michlmayr, M. (2002). Simulation theory versus theory theory: Theories concerning the ability to read minds. Diploma thesis, Leopold-Franzens-Universitat, Innsbruck.Google Scholar
  38. Millard, A. G., Timmis, J., & Winfield, A. F. T. (2013). Towards exogenous fault detection in swarm robotic systems. Towards Autonomous Robotic Systems, 429–430.Google Scholar
  39. Millard, A., Timmis, J., & Winfield, A. F. (2014). Run-time detection of faults in autonomous mobile robots based on the comparison of simulated and real robot behaviour. In IEEE/RSJ international conference on intelligent robots and systems (IROS 2014).Google Scholar
  40. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J. C., Floreano, D., & Martinoli, A. (2009). The e-puck, a robot designed for education in engineering. In Proceedings of 9th conference on autonomous robot systems and competitions, pp. 59–65.Google Scholar
  41. Moore, R. K. (2012). Lecture: Extending Maturana & Varela’s symbols, FECS, Feb 2012 pp. 1–20.Google Scholar
  42. Moore, R. K. (2016). Introducing a pictographic language for envisioning a rich variety of enactive systems with different degrees of complexity. International Journal of Advanced Robotic Systems, 13(74), 1–20.Google Scholar
  43. Morse, A. F., Greef, J. D., Belpaeme, T., & Cangelosi, A. (2010). Epigenetic robotics architecture (ERA). IEEE Transactions on Autonomous Mental Development, 2, 325–339.CrossRefGoogle Scholar
  44. Nagai, Y., Hosoda, K., Morita, A., & Asada, M. (2003). A constructive model for the development of joint attention. Connection Science, 15(4), 211–229.CrossRefGoogle Scholar
  45. O’Dowd, P., Studley, M., & Winfield, A. F. (2014). The distributed co-evolution of an on-board simulator and controller for swarm robot behaviours. Evolutionary Intelligence, 7(2), 95–106.CrossRefGoogle Scholar
  46. Oudeyer, P.-Y., Kaplan, F., & Hafner, V. V. (2007). Intrinsic motivation systems for autonomous mental development. IEEE Transactions on Evolutionary Computation, 11, 265–286.CrossRefGoogle Scholar
  47. Pico, A., Schillaci, G., Hafner, V. V., & Lara, B. (2016). How do I sound like? Forward models for robot ego-noise prediction. In Proceedings of the 6th joint IEEE international conference on development and learning and on epigenetic robotics, pp. 246–251. Paris.Google Scholar
  48. Rolf, M., & Steil, J. J. (2014). Explorative learning of inverse models: A theoretical perspective. Neurocomputing, 131, 2–14.CrossRefGoogle Scholar
  49. Rosen, R. (1985). Anticipatory systems: Philosophical, mathematical and methodological foundations. Oxford: Pergamon Press.Google Scholar
  50. Schillaci, G. (2014). Sensorimotor learning and simulation of experience as a basis for the development of cognition in robotics. Dissertation, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II.
  51. Schillaci, G., & Hafner, V. V. (2011). Random movement strategies in self-exploration for a humanoid robot. In 6th ACM/IEEE international conference on human-robot interaction (HRI), pp. 245–246, Lausanne.Google Scholar
  52. Schillaci, G., Hafner, V. V., & Lara, B. (2012a). Coupled inverse-forward models for action execution leading to tool-use in a humanoid robot. In Proceedings of the 7th ACM/IEEE international conference on human-robot interaction (HRI 2012), pp. 231–232, Boston.Google Scholar
  53. Schillaci, G., Lara, B., & Hafner, V. V. (2012b). Internal simulations for behaviour selection and recognition. In A. A. Salah, et al. (Eds.), Human behaviour understanding 2012 (Lecture Notes in Computer Science, Berlin, Heidelberg: Springer, Vol. 7559, pp. 148–160).Google Scholar
  54. Schillaci, G., Ritter, C. -N., Hafner, V. V., & Lara, B. (2016a). Body representations for robot ego-noise modelling and prediction. Towards the development of a sense of agency in artificial agents. In International conference on the simulation and synthesis of living systems (ALife XV), pp. 390–397, Mexico: MIT Press, July 2016.Google Scholar
  55. Schillaci, G., Hafner, V. V., & Lara, B. (2016b). Exploration behaviours, body representations and simulations processes for the development of cognition in artificial agents. Frontiers in Robotics and AI, Section Humanoid Robotics, 3, 39. Scholar
  56. Schillaci, G., Hafner, V. V., & Lara, B. (Eds.). (2016c). Re-enacting sensorimotor experience for cognition. Research Topic in Frontiers in Robotics and AI, Section Humanoid Robotics.
  57. Silver, D., et al. (2016). Mastering the game of go with deep neural networks and tree search. Nature, 529, 484–489. Scholar
  58. Vanderelst, D., & Winfield, A. (2017). Rational imitation for robots: The cost difference model. Adaptive Behavior, 25(2), 60–71.CrossRefGoogle Scholar
  59. Vaughan, R. T., & Zuluaga, M. (2006). Use your illusion: Sensorimotor self-simulation allows complex agents to plan with incomplete self-knowledge. In Proceedings of international conference on simulation of adaptive behaviour (SAB), pp. 298–309.Google Scholar
  60. Vaughan R.T., & Gerkey B.P. (2007). Reusable Robot Software and the Player/Stage Project. In: Brugali D. (eds) Software Engineering for Experimental Robotics. Springer Tracts in Advanced Robotics, vol 30. Springer, Berlin, Heidelberg.Google Scholar
  61. Vernon, D., Beetz, M., & Sandini, G. (2015). Prospection in cognition: The case for joint episodic-procedural memory in cognitive robotics. Frontiers in Robotics and AI, Section Humanoid Robotics, 2, 19.Google Scholar
  62. Winfield, A. F. (2012). Robotics: A very short introduction. New York: Oxford University Press.CrossRefGoogle Scholar
  63. Winfield A.F.T., & Jirotka M. (2017). The Case for an Ethical Black Box. In: Gao Y., Fallah S., Jin Y., Lekakou C. (eds) Towards Autonomous Robotic Systems. TAROS 2017. Lecture Notes in Computer Science, vol 10454. Springer, Cham.Google Scholar
  64. Winfield, A. F. (2018). When robots tell each other stories: The emergence of artificial fiction. In S. Stepney & R. Walsh (Eds.), Narrating complexity. Springer International Publishing, in press.Google Scholar
  65. Winfield, A. F., Blum, C., & Liu, W. (2014). Towards an ethical robot: Internal models, consequences and ethical action selection. In M. Mistry, A. Leonardis, M. Witkowski, & C. Melhuish (Eds.), Advances in autonomous robotics systems (pp. 85–96). Cham: Springer.Google Scholar
  66. Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science, 269, 1880.CrossRefGoogle Scholar
  67. Wolpert, D. M., Goodbody, S. J., & Husain, M. (1998). Maintaining internal representations: The role of the human superior parietal lobe. Nature Neuroscience, 1, 529–533.CrossRefGoogle Scholar
  68. Zagal, J. C., Delpiano, J., & Ruiz-del Solar, J. (2009). Self-modeling in humanoid soccer robots. Robotics and Autonomous Systems, 57(8), 819–827.CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Bristol Robotics LaboratoryUniversity of the West of EnglandBristolUK
  2. 2.Department of Computer ScienceHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations