Advertisement

Anticipation in MES – Memory Evolutive Systems

Living reference work entry

Abstract

The aim of this chapter is to study anticipation in autonomous adaptive systems, such as biological and social systems, which have a multilevel multi-agent organization and develop a robust though flexible long-term memory. The problem is to find the characteristics allowing the system, through some of its agent(s), (i) to enhance its comprehension of the nature and role of anticipation (what Riel Miller (Futures J Policy Plan Future Stud 39:341–362, 2007) calls “Futures Literacy”) and (ii) to use this knowledge to search for possible procedures and virtually evaluate their impact on behavior, decision-making, and/or future action. The present study concerns open systems during their ongoing evolution. Thus it is different from Rosen’s anticipatory systems in which anticipation results from the existence of an internal predictive model of the invariant structure of the system.

The study is done in the frame of the Memory Evolutive Systems (Ehresmann and Vanbremeersch, Bull Math Bio 49(1):13–50, 1987; Memory evolutive systems: hierarchy, emergence, cognition. Elsevier, 2007), a mathematical approach to “living” systems, based on a “dynamic” category theory incorporating time. The main characteristic making these systems capable of developing anticipatory processes is identified as a kind of “operational redundancy” called the Multiplicity Principle. MP allows the progressive emergence, in the memory, of multifaceted dynamical records of increasing complexity which are flexible enough to adapt to changes. In social systems, a group of interacting people can develop a shared higher-level hub of the memory of the system, its archetypal pattern, which acts as a motor in the development of anticipatory processes. An application is given to the “Futures Literacy” program of Riel Miller, with a comparison of its three phases with the three types of creativity distinguished by Boden (The creative mind; myths and mechanisms, 2nd edn. Routledge, 2004).

Keywords

Anticipation Category Future literacy Memory Memory evolutive system 

Notes

Acknowledgments

I thank the referee for his careful reading and interesting suggestions and references.

References

  1. Béjean, M., & Ehresmann, A. (2015). D-MES: Conceptualizing the working designers. International Journal of Design Management and Professional Practice, 9(4), 1–20.CrossRefGoogle Scholar
  2. Boden, M. (2004). The creative mind; myths and mechanisms (2nd ed.). London: Routledge.Google Scholar
  3. Branicki, M. S. (2005). Introduction to hybrid systems. In Handbook of networked and embedded control systems (pp. 91–116). Online: https://www.researchgate.net/publication/226587773
  4. Edelman, G. (1989). The remembered Present: a biological theory of consciousness. New York: Basic Books.Google Scholar
  5. Edelman, G., & Gally, J. (2001). Degeneracy and complexity in biological systems. Proceedings of the National Academy of Sciences of the United States of America, 98, 13763–13768.CrossRefGoogle Scholar
  6. Ehresmann, A., & Gomez-Ramirez, J. (2015). Conciliating neuroscience and phenomenology via category theory. Progress in Biophysics and Molecular Biology (JPMB), 119(2), 340–359. Elsevier.Google Scholar
  7. Ehresmann, A., & Vanbremeersch, J.-P. (1987). Hierarchical evolutive systems: A mathematical model for complex systems. Bulletin of Mathematical Biology, 49(1), 13–50.CrossRefGoogle Scholar
  8. Ehresmann, A., & Vanbremeersch, J.-P. (1996). Multiplicity principle and emergence in MES. Journal of Systems Analysis, Modelling, Simulation, 26, 81–117.Google Scholar
  9. Ehresmann, A., & Vanbremeersch, J.-P. (2007). Memory evolutive systems: Hierarchy, emergence, cognition. Elsevier. Amsterdam.Google Scholar
  10. Ehresmann, A., & Vanbremeersch, J.-P. (2009). A propos des Systèmes Evolutifs à Mémoire et du modèle MENS, Compte-rendu du SIC, Paris. Online: http://ehres.pagesperso-orange.fr
  11. Eilenberg, S., & Mac Lane, S. (1945). General theory of natural equivalences. Transactions of the American Mathematical Society, 58(2), 231.CrossRefGoogle Scholar
  12. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O., Friston, K.J. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6(7):e159Google Scholar
  13. Healy, M. J. (2010). Category theory as a mathematics for formalizing ontologies. In R. Poli et al. (Eds.), Theory and applications of ontology: Computer applications (pp. 487–510). Springer. New York.Google Scholar
  14. Hebb, D. O. (1949). The organization of behaviour. New York: Wiley.Google Scholar
  15. Izhikevich, E., Gally, J., & Edelman, G. (2004). Spike-timing dynamics of neuronal groups. Cerebral Cortex, 14, 933–944.CrossRefGoogle Scholar
  16. Jacob, F. (1970), La logique du vivant, Gallimard, Paris.Google Scholar
  17. Kan, D. (1958). Adjoint functors. Transactions of the American Mathematical Society, 89, 294–329.CrossRefGoogle Scholar
  18. Kolmogorov, A. (1968). Logical basis for information theory and probability theory. IEEE Transactions on Information Theory, 14(5), 662–664.CrossRefGoogle Scholar
  19. Longo, G., Montévil, M., & Kauffman, S. (2012). No entailing laws, but enablement in the evolution of the biosphere, Archiv 1201–2069.v1.Google Scholar
  20. Mac Lane, S. (1971). Categories for the working mathematician. New York: Springer.CrossRefGoogle Scholar
  21. Matsuno, K. (2012). Time in biology as a marker of the class identity of molecules. In P. Simeonov, L. Smith, & A. Ehresmann (Eds.), Integral biomathics: Tracing the road to reality (pp. 269–277). Berlin: Springer.CrossRefGoogle Scholar
  22. Miller, R. (2007). Futures literacy: A hybrid strategic scenario method. Futures: The Journal of Policy Planning and Future Studies, 39, 341–362.CrossRefGoogle Scholar
  23. Miller, R., Poli, R., & Rossel, P.. (2015). The discipline of anticipation: Foundations for futures literacy. In S. Petrov (Ed.), Dynamic being: Essays in process-relational Ontology. CSP. Cambridge.Google Scholar
  24. Poli, R. (2009). The complexity of anticipation. Balkan Journal of Philosophy. 1(1), 19-29.Google Scholar
  25. Poli, R. (2014). The difference between dynamical systems and process theories, preprint.Google Scholar
  26. Popper, K. (2002). The poverty of historicism. London: Routledge Classics.Google Scholar
  27. Rosen, R. (1985a). Anticipatory systems. Philosophical, mathematical and methodological foundations. New York: Pergamon.Google Scholar
  28. Rosen, R. (1985b). Organisms as causal systems which are not mechanisms: An essay into the nature of complexity. In R. Rosen (Ed.), Theoretical biology and complexity: Three essays into the natural philosophy of complex systems (pp. 165–203). Orlando: Academic.CrossRefGoogle Scholar
  29. Simondon, G. (2005). L’individuation à la lumière des notions de formes et d'information. Editions Jérôme Millon. Paris.Google Scholar
  30. Skulimowski, A. M. J. (2011). Anticipatory networks and superanticipatory systems. In 10th International Conference on Computing Anticipatory Systems, CASYS 2011, Liège.Google Scholar
  31. Star, S., & Griesemer, J. (1989). Institutional ecology, ‘translations’ and boundary objects: Amateurs and professionals in Berkeley’s Museum of Vertebrate Zoology, 1907–39. Social Studies of Science, 19(3), 387–420.CrossRefGoogle Scholar
  32. Thom, R. (1988). Esquisse d'une Sémiophysique. Paris: InterEditions.Google Scholar
  33. Varela, F. (1996). Neurophenomenology. Journal of Consciousness Studies, 3, 330–350.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculté des Sciences, Mathématiques LAMFAUniversité de Picardie Jules VerneAmiensFrance

Personalised recommendations