Skip to main content

Dielectric Elastomers as EAPs: Models

  • Reference work entry
  • First Online:
Book cover Electromechanically Active Polymers

Abstract

The effective use of dielectric elastomers (DE) in actual transducers requires the definition of reliable design tools which correctly predict their electromechanical behavior. In this chapter, we present two different approaches for modeling DE. The first approach is focussed on describing the electroelastic behavior of DEs in the framework of finite-strain electromechanics. The second approach, based on lumped parameters, is motivated by the desire to provide a simple and adequate description of the behavior of DE actuators under the influence of an electrical voltage applied to the electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bagley RL (1989) Power law and fractional calculus model of viscoelasticity. AIAA J 27:1412–1417

    Article  Google Scholar 

  • Bertoldi K, Gei M (2011) Instabilities in multilayered soft dielectrics. J Mech Phys Solids 59:18–42

    Article  Google Scholar 

  • Carpi F, Gei M (2013) Predictive stress–stretch models of elastomers up to the characteristic flex. Smart Mater Struct 22(10):104011

    Article  Google Scholar 

  • Dorfmann A, Ogden RW (2005) Nonlinear electroelasticity. Acta Mech 174:167–183

    Article  Google Scholar 

  • Gent AN (1992) Engineering with rubber: how to design rubber components. Hanser Verlag, Munich

    Google Scholar 

  • Haus H, Matysek M, Mößinger H et al (2013) Modelling and characterization of dielectric elastomer stack actuators. Smart Mater Struct 22:104009 (12pp)

    Google Scholar 

  • Koeller RC (1984) Applications of fractional calculus to the theory of viscoelasticity. J Appl Mech 51:299–307

    Article  Google Scholar 

  • Lotz P (2009) Dielektrische Elastomerstapelaktoren für ein peristaltisches Fluidfördersystem. Dissertation Technische Universität Darmstadt, Darmstadt

    Google Scholar 

  • Lotz P, Matysek M, Schlaak HF (2011) Fabrication and application of miniaturized dielectric elastomer stack actuators. IEEE/ASME Trans Mechatron 16:58–66

    Article  Google Scholar 

  • Moré JJ (1978) The Levenberg-Marquardt algorithm: Implementation and theory, in numerical analysis, Bd. 630, G. A. Watson, Hrsg. Springer Berlin Heidelberg, S. 105–116

    Google Scholar 

  • Matysek M (2010) Dielektrische Elastomeraktoren in Multilayer-Technologie für taktile Displays. Dissertation Technische Universität Darmstadt, Darmstadt

    Google Scholar 

  • Matysek M, Lotz P, Flittner K et al (2008) High-precision characterization of dielectric elastomer stack actuators and their material parameters. Smart Struct Mater: Proc SPIE 6927:692722

    Google Scholar 

  • McMeeking RM, Landis CM (2005) Electrostatic forces and stored energy for deformable dielectric materials. J Appl Mech 72:581–590

    Article  Google Scholar 

  • Mößinger H (2010) Demonstrating the application of dielectric polymer actuators for tactile feedback in a mobile consumer device. Master thesis technische Universität Darmstadt, Darmstadt

    Google Scholar 

  • Ogden RW (1997) Nonlinear elastic deformations. Dover, New York

    Google Scholar 

  • Pelrine RE, Kornbluh RD, Joseph JP (1998) Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensors Actuators 64:77–85

    Article  Google Scholar 

  • Schlaak HF, Jungmann M, Matysek M et al (2005) Novel multilayer electrostatic solid state actuators with elastic dielectric. Smart Struct Mater: Proc. SPIE 5759:121–133

    Google Scholar 

  • Schmidt A, Gaul L (2001) Bestimmung des komplexen Elastizitätsmoduls eines Polymers zur Identifikation eines viskoelastischen Stoffgesetzes mit fraktionalen Zeitableitungen. In: Proceedings of Deutsche Gesellschaft für Zerstörungsfreie Prüfung Jahrestagung 75, Berlin

    Google Scholar 

  • Suo Z, Zhao X, Green WH (2008) A nonlinear field theory of deformable dielctrics. J Mech Phys Solids 56(2):467–486

    Article  Google Scholar 

  • van der Pauw LJ (1958) A method of measuring the resistivity and hall coefficient on lamellae of arbitrary shape. Philips Tech Rev 20:220–224

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut F. Schlaak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Schlaak, H.F., Gei, M., Bortot, E., Haus, H., Mößinger, H. (2016). Dielectric Elastomers as EAPs: Models. In: Carpi, F. (eds) Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31530-0_32

Download citation

Publish with us

Policies and ethics