Skip to main content

Polymer Electrets and Ferroelectrets as EAPs: Materials

  • Reference work entry
  • First Online:
Electromechanically Active Polymers

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

Recent progress relating to polymer electret and ferroelectret materials is reviewed. As for polymer electret materials, the development is described in two aspects: (i) Modified conventional polymer electret materials with improved electret properties. The improvement of the electret properties is achieved by incorporating suitable additives, by blending different polymer compounds, or by modifying with certain chemicals. Sometimes, the properties can be further enhanced by physical aging. (ii) Newly introduced high-performance polymer electrets. Parylene HT® and CYTOP are two examples. They can not only retain high surface charge densities but also show exceptional high temperature stability. Moreover, they are compatible with MEMS technology and therefore are particularly attractive for applications in micro power electret generators.

The research of ferroelectret, as a relatively new branch in the field of electret, has been advanced significantly in recent years. A considerable number of cellular polymer foams and polymer film systems containing internal cavities have been developed and identified as ferroelectrets. Following the early example of cellular polypropylene (PP) ferroelectret, cellular foam ferroelectrets have been developed from polyesters (polyethylene terephthalate PETP and poly(ethylene naphthalate) PENP), cyclo-olefin copolymer (COC), and fluoroethylenepropylene (FEP). The cellular structures, formed by techniques such as stretching filler-loaded polymer melt and foaming with supercritical CO2, can be adjusted and optimized with gas-diffusion expansion process. Besides, the number of ferroelectrets of polymer film systems with internal cavities is rapidly increasing. These are layer structures, composed of hard (solid) and soft (highly porous) polymer layers, and polymer film systems containing regular cavities. Polytetrafluoroehylene (PTFE) (solid or porous) and polycarbonate (PC) are also added to the list of candidate materials for making this type of ferroelectrets. These exciting developments significantly enlarge the range of functional space-charge polymer electrets and bring forth numerous novel applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altafim RAC, Basso HC, Gonçalves Neto L, Lima L, Altafim RAP, de Aquino CV (2005) Piezoelectricity in multi-air voids electrets. In: Proceedings of conference electrical insulation dielectric phenomena, IEEE Service Center, Piscataway, pp 669–672

    Google Scholar 

  • Altafim RAC, Basso HC, Altafilm RAP, Lima L, de Aquino CV, Gonçalves Neto L, Gerhard-Multhaupt R (2006) Piezoelectrets from thermo-formed bubble structures of fluoropolymer-electret films. IEEE Trans Dielectr Electr Insul 13(5):979–985

    Google Scholar 

  • Altafim RAP, Qiu X, Wirges W, Gerhard R, Altafim RAC, Basso HC, Jenninger W, Wagner J (2009) Template-based fluoroethylenepropylene piezoelectrets with tubular channels for transducer applications. J Appl Phys 106:014106

    Article  Google Scholar 

  • An Z, Yang Q, Xie C, Jiang Y, Zheng F, Zhang Y (2009a) Suppression effect of surface fluorination on charge injection into linear low density polyethylene. J Appl Phys 105:064102

    Article  Google Scholar 

  • An Z, Xie C, Jiang Y, Zheng F, Zhang Y (2009b) Significant suppression of space charge injection into linear low density polyethylene by surface oxyfluorination. J Appl Phys 106:104112

    Article  Google Scholar 

  • An Z, Zhao M, Yao J, Zhang Y, Xia Z (2009c) Influence of fluorination on piezoelectric properties of cellular polypropylene ferroelectrets. J Phys D Appl Phys 42:015418

    Article  Google Scholar 

  • An Z, Mao M, Cang J, Zhang Y, Zheng F (2012) Significantly improved piezoelectric thermal stability of cellular polypropylene films by high pressure fluorination and post-treatments. J Appl Phys 111:024111

    Article  Google Scholar 

  • Arakawa Y, Suzuki Y, Kasagi N (2004) Micro seismic power generator using electret polymer film. In: Proceedings of powerMEMS 2004, Kyoto, pp 187–190

    Google Scholar 

  • Bhrendt N (2010) Tailored processing methods for cellular polycarbonate and polyetherimide films – new potentials for electret and piezoelectric applications. IEEE Trans Dielectr Electr Insul 17(4):1113

    Article  Google Scholar 

  • Erhard DP, Deliani L, von Salis-Soglio C, Giesa R, Alstädt V, Schmidt HW (2010a) Recent advances in the improvement of polymer electret films. In: Müller AHE, Schmidt HW (eds) Complex macromolecular systems II, vol 228, Book series: advances in polymer science. Springer, Berlin, pp 155–207

    Chapter  Google Scholar 

  • Erhard DP, Lovera D, Giesa R, Alstädt V, Schmidt HW (2010b) Influence of physical aging on the performance of corona-charged amorphous polymer electrets. J Polym Sci B Polym Phys 48:990–997

    Article  Google Scholar 

  • Erhard DP, Lovera D, Jenninger W, Wagner J, Altstädt V, Schmidt H (2010c) Tailored additives to improve the electret performance of polycarbonates. Macromol Chem Phys 211:2179

    Article  Google Scholar 

  • Fang P, Wegener M, Wirges W, Gerhard R (2007) Cellular polyethylene-naphthalate ferroelectrets: foaming in supercritical carbon dioxide, structural and electrical preparation, and resulting piezoelectricity. Appl Phys Lett 90:192908

    Article  Google Scholar 

  • Fang P, Wirges W, Wegener M, Zirkel L, Gerhard R (2008) Cellular polyethylene-naphthalate films for ferroelectret applications: foaming, inflation and stretching, assessment of electromechanically relevant structural features. E-Polymers 8(1):487–495

    Article  Google Scholar 

  • Fang P, Qiu X, Wirges W, Gerhard R, Zirkel L (2010) Polyethylene-naphthalate (PEN) ferroelectrets: cellular structure, piezoelectricity and thermal stability. IEEE Trans Dielectr Electr Insul 17(4):1079–1087

    Article  Google Scholar 

  • Fang P, Wang F, Wirges W, Gerhard R, Basso HC (2011) Three-layer piezoelectrets from fluorinated ethylene-propylene (FEP) copolymer films. Appl Phys A Mater Sci Process 103:455–461

    Article  Google Scholar 

  • Gerhard-Multhaupt R (ed) (1999) Electrets, vol 2, 3rd edn. Laplacian Press, Morgan Hill

    Google Scholar 

  • Gerhard-Multhaupt R, Küstler W, Goerne T, Pucher A, Weinhold T, Seiβ M, Xia Z, Wedel A, Danz R (2000) Porous PTFE space-charge electrets for piezoelectric applications. IEEE Trans Dielectr Electr Insul 7(4):480–488

    Article  Google Scholar 

  • Hilczer B, Malecki J (1986) Electrets. Elsevier, Amsterdam

    Google Scholar 

  • Hu Z, von Seggern H (2005) Air-breakdown charging mechanism of fibrous polytetrafluoroethylene films. J Appl Phys 98:014108

    Article  Google Scholar 

  • Hu Z, von Seggern H (2006) Breakdown-induced polarization buildup in porous fluoropolymer sandwiches: a thermally stable piezoelectret. J Appl Phys 99:024102

    Article  Google Scholar 

  • Huang J, Zhang X, Xia Z, Wang X (2008) Piezoelectrets from laminated sandwiches of porous polytetrafluoroethylene films and nonporous fluoroethylenepropylene films. J Appl Phys 103:084111

    Article  Google Scholar 

  • Kashiwagi K, Okano K, Miyajima T, Sera Y, Tanabe N, Morizawa Y, Suzuki Y (2011) Nano-cluster-enhanced high-performance perfluoro-polymer electrets for energy harvesting. J Micromech Microeng 21:125016

    Article  Google Scholar 

  • Kirjavainen K (1987) Electromechanical film and procedure for manufacturing same. US Patent 4,654,546

    Google Scholar 

  • Ko WC, Tseng CK, Leu IY, Wu WJ, Lee AS, Lee CK (2010) Use of 2-(6-mercaptohexyl) malonic acid to adjust the morphology and electret properties of cyclic olefin copolymer and its application to flexible loudspeakers. Smart Mater Struct 19:055007

    Article  Google Scholar 

  • Kressmann R, Sessler GM, Günther P (1999) Chapter 9: Space-charge electrets. In: Gerhard-Multhaupt R (ed) Electrets, vol 2, 3rd edn. Laplacian Press, Morgan Hill, pp 1–40

    Google Scholar 

  • Künstler W, Xia Z, Weinhold T, Pucher A, Gerhard-Multhaupt R (2000) Piezoelectricity of porous polytetrafluoroethylene single- and multiple-film electrets containing high charge densities of both polarities. Appl Phys A Mater Sci Process 70(1):5–8

    Article  Google Scholar 

  • Lekkala J, Paajanen M (1999) EMFi-new electrets material for sensors and actuators. In: Proceedings of 10th international symposium electrets, Delphi, pp 743–746

    Google Scholar 

  • Li Y, Zeng C (2013) Low-temperature CO2-assisted assembly of cyclic olefin copolymer ferroelectrets of high piezoelectricity and thermal stability. Macromol Chem Phys 214:2733–2738

    Article  Google Scholar 

  • Lo HW, Tai YC (2008) Parylene-based electrets power generators. J Micromech Microeng 18:104006

    Article  Google Scholar 

  • Mellinger A, Wegener M, Wirges W, Gerhard-Multhaupt R (2001) Thermally stable dynamic piezoelectricity in sandwich films of porous and non-porous amorphous fluoropolymer. Appl Phys Lett 79:1852–1854

    Article  Google Scholar 

  • Mellinger A, Wegener M, Wirges W, Mallepally RR, Gerhard-Multhaupt R (2006) Thermal and temporal stability of ferroelectret films made from cellular polypropylene/air composites. Ferroelectrics 331:189–199

    Article  Google Scholar 

  • Nakayama M, Uenaka Y, Kataoka S, Oda Y, Yamamoto K, Tajitsu Y (2009) Piezoelectricity of ferroelectret porous polyethylene thin film. Jpn J Appl Phys 48:09KE05

    Article  Google Scholar 

  • Neugschwandtner GS, Schwödiauer R, Bauer-Gogonea S, Bauer S, Paajanen M, Lekkala J (2001) Piezo- and pyroelectricity of a polymer-foam space-charge electret. J Appl Phys 89:4503

    Article  Google Scholar 

  • Paajanen M, Minkkinen H, Raukola J (2002) Gas diffusion expansion-increased thickness and enhanced electromechanical response of cellular polymer electret films. In: Proceedings of 11th international symposium electrets, Melbourne, pp 191–194

    Google Scholar 

  • Qiu X, Holländer L, Suárez RF, Wirges W, Gerhard R (2010) Polarization from dielectric-barrier discharges (DBDs) in ferroelectrets: mapping of the electric-field profiles by means of thermal-pulse-tomography (TPT). Appl Phys Lett 97:072905

    Article  Google Scholar 

  • Qiu X, Gerhard R, Mellinger A (2011) Turning polymer foams or polymer-film systems into ferroelectrets: dielectric barrier discharges in voids. IEEE Trans Dielectr Electr Insul 18(1):34–42

    Article  Google Scholar 

  • Raschke CR, Nowlin TE (1980) Polyparaxylylene electrets usable at high temperatures. J Appl Polym Sci 25:1639–1644

    Article  Google Scholar 

  • Raukola J (1998) A new technology to manufacture polypropylene foam sheet and biaxially oriented foam film. Ph.D. thesis, Technical Research Centre of Finland. VTT Publication 361, Espoo

    Google Scholar 

  • Raukola J, Kuusinen N, Paajanen M (2002) Cellular electrets – from polymer granules to electromechanically active films. In: Proceedings of 11th international symposium electrets, Melbourne, pp 195–198

    Google Scholar 

  • Rychkov D, Gerhard R (2011) Stabilization of positive charge on polytetrafluoroethylene films treated with titanium-tetrachloride vapor. Appl Phys Lett 98:122901

    Article  Google Scholar 

  • Rychkov D, Kuznetsov A, Rychkov A (2011a) Electret properties of polyethylene and polytetrafluoroethylene films with chemically modified surface. IEEE Trans Dielectr Electr Insul 18:8–14

    Article  Google Scholar 

  • Rychkov D, Kuznetsov A, Rychkov A, Goldade V (2011b) Electret properties of polyethylene films modified with titanium tetrachloride vapor. In: Proceedings of 14th international symposium electrets, Montpellier, pp 111–112

    Google Scholar 

  • Rychkov D, Gerhard R, Ivanov V, Rychkov A (2012a) Enhanced electret charge stability on polyethylene films treated with titanium-tetrachloride vapor. IEEE Trans Dielectr Electr Insul 19(4):1305–1311

    Article  Google Scholar 

  • Rychkov D, Altafim RAP, Qiu X, Gerhard R (2012b) Treatment with orthophosphoric acid enhances the thermal stability of the piezoelectricity in low-density polyethylene ferroelectrets. J Appl Phys 111:124105

    Article  Google Scholar 

  • Rychkov D, Yablokov M, Rychkov A (2012c) Chemical and physical surface modification of PTFE films – an approach to produce stable electrets. Appl Phys A Mater Sci Process 107(3):589–596

    Article  Google Scholar 

  • Rychkov D, Rychkov A, Efimov N, Malygin A, Gerhard R (2013) Higher stabilities of positive and negative charge on tetrafluoroethylene–hexafluoropropylene copolymer (FEP) electrets treated with titanium-tetrachloride vapor. Appl Phys A 112:283–287

    Article  Google Scholar 

  • Saarimäki E, Paajanen M, Savijärvi AM, Minkkinen H (2005) Novel heat durable electromechanical film processing: preparations for electromechanical and electret applications. In: Proceedings of 12th international symposium electrets (ISE 12), IEEE Service Center, Piscataway, pp 220–223

    Google Scholar 

  • Saarimäki E, Paajanen M, Savijärvi AM, Minkkinen H, Wegener M, Voronina O, Schulze R, Wirges W, Gerhard-Multhaupt R (2006) Novel heat durable electromechanical film processing: preparations for electromechanical and electret applications. IEEE Trans Dielectr Electr Insul 13(5):963–972

    Google Scholar 

  • Sakane Y, Suzuki Y, Kasagi N (2008) The development of a high-performance perfluorinated polymer electret and its application to micro power generation. J Micromech Microeng 18:104011

    Article  Google Scholar 

  • Savijärvi AM, Paajanen M, Saarimäki E, Minkkinen H (2005) Novel heat durable electromechanical films: cellular film making from cyclic olefin polymers. In: Proceedings of 12th international symposium electrets (ISE 12), IEEE Service Center, Piscataway, pp 75–78

    Google Scholar 

  • Savolainen A, Kirjavainen K (1989) Electrothermomechanical film: Part I. Design and characteristics. J Macromol Sci A Chem 26(2&3):583–591

    Article  Google Scholar 

  • Sborikas M, Qiu X, Wirges W, Gerhard R, Jenninger W, Lovera D (2014) Screen printing for producing ferroelectret systems with polymer-electret films and well-defined cavities. Appl Phys A Mater Sci Process 114:515–520

    Article  Google Scholar 

  • Sessler GM (ed) (1999) Electrets, vol 1, 3rd edn. Laplacian Press, Morgan Hill

    Google Scholar 

  • Sessler GM (2001) Electrets: recent developments. J Electrost 51–52:137–145

    Article  Google Scholar 

  • Sessler GM, Yang GM, Hatke W (1997) Electret properties of cycloolefin copolymers. Electrical insulation and dielectric phenomena. In: Annual report conference on electrical insulation dielectric phenomena, IEEE Service Center, Piscataway, pp 467–470

    Google Scholar 

  • Sun Z, Zhang X, Xia Z, Qiu X, Wirges W, Gerhard R, Zeng C, Zhang C, Wang B (2011) Polarization and piezoelectricity in polymer films with artificial void structure. Appl Phys A Mater Sci Process 105:197–205

    Article  Google Scholar 

  • Suzuki Y (2011) Recent progress in MEMS electret generator for energy harvesting. IEEJ Trans Electr Electron Eng 6:101–111

    Article  Google Scholar 

  • Tajitsu Y (2011) Piezoelectric properties of ferroelectret. Ferroelectrics 415:57–66

    Article  Google Scholar 

  • Tsutsumino T, Suzuki Y, Kasagi N, Tsurumi Y (2005) High-performance polymer electret for micro seismic generator. In: Proceedings of powerMEMS 2005, Tokyo, pp 9–12

    Google Scholar 

  • Tsutsumino T, Suzuki Y, Kasagi1 N, Sakane Y (2006) Seismic power generator using high-performance polymer electret. In: Proceedings of international conference MEMS’06, Istanbul, pp 98–101

    Google Scholar 

  • Veronina O, Wegener M, Wirges W, Gerhard R, Zirkel L, Münstedt H (2008) Physical foaming of fluorinated ethylene-propylene (FEP) copolymers in supercritical carbon dioxide: single-film fluoropolymer piezoelectrets. Appl Phys A Mater Sci Process 90:615–618

    Article  Google Scholar 

  • von Seggern H, Zhukov S, Fedosov S (2010) Poling dynamics and thermal stability of FEP/ePTFE/FEP sandwiches. IEEE Trans Dielectr Electr Insul 17(4):1056–1065

    Article  Google Scholar 

  • von Seggern H, Zhukov S, Fedosov S (2011) Importance of geometry and breakdown field on the piezoelectric d33 coefficient of corona charged ferroelectret sandwiches. IEEE Trans Dielectr Electr Insul 18(1):49–56

    Article  Google Scholar 

  • Wang J, Hsu T, Yeh C, Tsai J, Su Y (2012) Piezoelectric polydimethylsiloxane films for MEMS transducers. J Micromech Microeng 22:015013

    Article  Google Scholar 

  • Wang J, Tsai J, Su Y (2013) Piezoelectric rubber films for highly sensitive impact measurement. J Micromech Microeng 23:075009

    Article  Google Scholar 

  • Wegener M, Wirges W, Fohlmeister J, Tiersch B, Gerhard-Multhaupt R (2004) Two-step inflation of cellular polypropylene films: void-thickness increase and enhanced electromechanical properties. J Phys D Appl Phys 37(4):623–627

    Article  Google Scholar 

  • Wegener M, Wirges W, Gerhard-Multhaupt R (2005a) Piezoelectric polyethylene terephthalate (PETP) foams – specifically designed and prepared ferroelectret films. Adv Eng Mater 7:1128–1131

    Article  Google Scholar 

  • Wegener M, Wirges W, Dietrich JP, Gerhard-Multhaupt R (2005b) Polyethylene terephthalate (PETP) foams as ferroelectrets. In: Proceedings of 12th international symposium electrets (ISE 12), IEEE Service Center, Piscataway, pp 28–30

    Google Scholar 

  • Wegener M, Paajanen M, Voronina O, Schulze R, Wirges W, Gerhard-Multhaupt R (2005c) Voided cyclo-olefin polymer films: ferroelectrets with high thermal stability, In: Proceedings of 12th international symposium electrets, IEEE Service Center, Piscataway, pp 47–50

    Google Scholar 

  • Wirges W, Wegener M, Voronina O, Zirkel L, Gerhard-Multhaupt R (2007) Optimized preparation of elastically soft, highly piezoelectric cellular ferroelectrets from nonvoided poly(ethylene terephthalate) films. Adv Funct Mater 17:324–329

    Article  Google Scholar 

  • Xia Z, Gerhar-Multhaupt R, Künstler W, Wedel A, Dan R (1999) High surface-charge stability of porous polytetrafluoroethylene electret films at room and elevated temperatures. J Phys D Appl Phys 32:L83

    Article  Google Scholar 

  • Yang ZH, Wang J, Zhang JW (2012) Research and development of micro electret power generators. SCIENCE CHINA Technol Sci 55(3):581–587

    Article  Google Scholar 

  • Zhang X, Hillenbrand J, Sessler GM (2004) Piezoelectric d 33 coefficient of cellular polypropylene subjected to expansion by pressure treatment. Appl Phys Lett 85:1226–1228

    Article  Google Scholar 

  • Zhang X, Hillenbrand J, Sessler GM (2006) Thermally stable fluorocarbon ferroelectrets with high piezoelectric coefficient. Appl Phys A Mater Sci Process 84:139–142

    Article  Google Scholar 

  • Zhang X, Hillenbrand J, Sessler GM (2007) Ferroelectrets with improved thermal stability made from fused fluorocarbon layers. J Appl Phys 101:054114

    Article  Google Scholar 

  • Zhang X, Wang X, Cao G, Pan D, Xia Z (2009) Polytetrafluoroethylene piezoelectrets prepared by sintering process. Appl Phys A Mater Sci Process 97:859–862

    Article  Google Scholar 

  • Zhang X, Cao G, Sun Z, Xia Z (2010) Fabrication of fluoropolymer piezoelectrets by using rigid template: structure and thermal stability. J Appl Phys 108:064113

    Article  Google Scholar 

  • Zhang X, Hillenbrand J, Sessler GM, Haberzettl S, Lou K (2012) Fluoroethylenepropylene ferroelectrets with patterned microstructure and high, thermally stable piezoelectricity. Appl Phys A Mater Sci Process 107:621–629

    Article  Google Scholar 

  • Zhang X, Sessler GM, Wang Y (2014a) Fluoroethylenepropylene ferroelectret films with cross-tunnel structure for piezoelectric transducers and micro energy harvesters. J Appl Phys 116:074109

    Article  Google Scholar 

  • Zhang X, Zhang X, Sessler GM, Gong X (2014b) Quasi-static and dynamic piezoelectric responses of layered polytetrafluoroethylene ferroelectrets. J Phys D Appl Phys 47:015501

    Article  Google Scholar 

  • Zhukov S, von Seggern H (2007a) Breakdown-induced light emission and poling dynamics of porous fluoropolymers. J Appl Phys 101:084106

    Article  Google Scholar 

  • Zhukov S, von Seggern H (2007b) Polarization hysteresis and piezoelectricity in open-porous fluoropolymer sandwiches. J Appl Phys 102:044109

    Article  Google Scholar 

  • Zhukov S, Fedosov S, von Seggern H (2011) Piezoelectrets from sandwiched porous polytetrafluoroethylene (ePTFE) films: influence of porosity and geometry on charging properties. J Phys D Appl Phys 44(10):105501

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xunlin Qiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Qiu, X. (2016). Polymer Electrets and Ferroelectrets as EAPs: Materials. In: Carpi, F. (eds) Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31530-0_25

Download citation

Publish with us

Policies and ethics