Skip to main content

Electrochemically and Electrothermally Driven Carbon-Based Materials as EAPs: How to Start Experimenting with Them

  • Reference work entry
  • First Online:
  • 2204 Accesses

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

Carbon is a distinctive electrode material for actuators, as it is available in a wide variety of forms, ranging from monoliths to powders, fibers, and yarns. The diversity in the properties of different carbonaceous materials is also expressed in a variety of actuation mechanisms. This chapter considers two classes of actuators – electrochemically and electrothermally driven actuators – which both make use of carbonaceous materials as active elements. In both of the listed types of actuators, carbon is especially advantageous because of its chemical and thermal inertness and also because of its high intrinsic electrical conductivity. The working principles of different actuators, having carbonaceous electrodes, are drastically different and so are the optimization criteria for selecting a particular type of carbon for a particular type of actuator. This chapter is to explain some important practical considerations for successful experimentation with the carbon-based actuators. Special attention is bestowed on the choice of materials and the choice of appropriate electrical driving signal. The effects caused by the ambient environment are discussed. Finally, a selection of commonly used characterization methods is suggested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Carbon nanotube actuators. Science 284(5418):1340–1344

    Article  Google Scholar 

  • Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313(5794):1760–1763

    Article  Google Scholar 

  • Chun K, Kim SH, Shin MK, Kwon CH, Park J, Kim YT, Spinks GM, Lima MD, Haines CS, Baughman RH (2014) Hybrid carbon nanotube yarn artificial muscle inspired by spider dragline silk. Nat Commun 5:3322

    Article  Google Scholar 

  • Foroughi J, Spinks GM, Wallace GG, Oh J, Kozlov ME, Fang S, Mirfakhrai T, Madden JD, Shin MK, Kim SJ, Baughman RH (2011) Torsional carbon nanotube artificial muscles. Science 334(6055):494–497

    Article  Google Scholar 

  • Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aida T (2003) Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300(5628):2072–2074

    Article  Google Scholar 

  • Fukushima T, Asaka K, Kosaka A, Aida T (2005) Fully plastic actuator through layer-by-layer casting with ionic-liquid-based Bucky gel. Angew Chem 117(16):2462–2465

    Article  Google Scholar 

  • Ghaffari M, Kinsman W, Zhou Y, Murali S, Burlingame Q, Lin M, Ruoff R, Zhang Q (2013) Aligned nano‐porous microwave exfoliated graphite oxide ionic actuators with high strain and elastic energy density. Adv Mater 25(43):6277–6283

    Article  Google Scholar 

  • Ilievski F, Mazzeo AD, Shepherd RF, Chen X, Whitesides GM (2011) Soft robotics for chemists. Angew Chem 123(8):1930–1935

    Article  Google Scholar 

  • Kikuchi K, Tsuchitani S (2009) Effects of environmental humidity on electrical properties of ionic polymer-metal composite with ionic liquid. In: Proceedings of the ICCAS-SICE 2009, IEEE, Fukuoka, pp 4747–4751

    Google Scholar 

  • Kosidlo U, Omastová M, Micusík M, Ćirić-Marjanović G, Randriamahazaka H, Wallmersperger T, Aabloo A, Kolaric I, Bauernhansl T (2013) Nanocarbon based ionic actuators – a review. Smart Mater Struct 22(10):104022

    Article  Google Scholar 

  • Kruusamäe K, Punning A, Aabloo A (2012) Electrical model of a carbon-polymer composite (CPC) collision detector. Sensors 12(2):1950–1966

    Article  Google Scholar 

  • Kruusamäe K, Mukai K, Sugino T, Asaka K (2014) Impact of viscoelastic properties on bucky-gel actuator performance. J Intell Mater Syst Struct 25(18), 2235–2245

    Google Scholar 

  • Lazzari M, Arbizzani C, Soavi F, Mastragostino M (2013) EDLCs Based on solvent free ionic liquids. In: Béguin F, Frąckowiak E (eds) Supercapacitors: materials, systems, and applications. Wiley, Weinheim, pp 289–306

    Chapter  Google Scholar 

  • Lima MD, Fang S, Lepro X, Lewis C, Ovalle-Robles R, Carretero-Gonzalez J, Castillo-Martinez E, Kozlov ME, Oh J, Rawat N, Haines CS, Haque MH, Aare V, Stoughton S, Zakhidov AA, Baughman RH (2011) Biscrolling nanotube sheets and functional guests into yarns. Science 331(6013):51–55

    Article  Google Scholar 

  • Lima MD, Li N, Jung de Andrade M, Fang S, Oh J, Spinks GM, Kozlov ME, Haines CS, Suh D, Foroughi J, Kim SJ, Chen Y, Ware T, Shin MK, Machado LD, Fonseca AF, Madden JD, Voit WE, Galvao DS, Baughman RH (2012) Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science 338(6109):928–932

    Article  Google Scholar 

  • Madden JD, Barisci JN, Anquetil PA, Spinks GM, Wallace GG, Baughman RH, Hunter IW (2006) Fast carbon nanotube charging and actuation. Adv Mater 18(7):870–873

    Article  Google Scholar 

  • Miller J (2007) A brief history of supercapacitors. Battery Energy Storage Technol 2007:61–78

    Google Scholar 

  • Mirvakili SM, Pazukha A, Sikkema W, Sinclair CW, Spinks GM, Baughman RH, Madden JD (2013) Niobium nanowire yarns and their application as artificial muscles. Adv Funct Mater 23(35):4311–4316

    Article  Google Scholar 

  • Mukai K, Asaka K, Sugino T, Kiyohara K, Takeuchi I, Terasawa N, Futaba DN, Hata K, Fukushima T, Aida T (2009) Highly conductive sheets from millimeter long single walled carbon nanotubes and ionic liquids: application to fast moving, low voltage electromechanical actuators operable in air. Adv Mater 21(16):1582–1585

    Article  Google Scholar 

  • Must I, Kruusamäe K, Johanson U, Tamm T, Punning A, Aabloo A (2011) Characterisation of electromechanically active polymers using electrochemical impedance spectroscopy. In: Kanoun O (ed) Lecture notes on impedance spectroscopy, vol 2. CRC Press, London, pp 113–121

    Google Scholar 

  • Must I, Johanson U, Kaasik F, Põldsalu I, Punning A, Aabloo A (2013) Charging supercapacitor-like laminate with ambient moisture: from humidity sensor to energy harvester. Phys Chem Chem Phys 15(24):9605–9614

    Article  Google Scholar 

  • Must I, Kaasik F, Põldsalu I, Mihkels L, Johanson U, Punning A, Aabloo A (2015) Ionic and capacitive artificial muscle for biomimetic soft robotics. Adv Eng Mater 17(1):84–94

    Google Scholar 

  • Must I, Kaasik F, Põldsalu I, Mihkels L, Johanson U, Punning A, Aabloo A (2014b). Pulse-width-modulated charging of ionic and capacitive actuators. In: Proceedings of the IEEE/ASME international conference on advanced intelligent mechatronics (AIM) 2014, IEEE, Besançon, pp 1446–1451

    Google Scholar 

  • Must I, Vunder V, Kaasik F, Põldsalu I, Johanson U, Punning A, Aabloo A (2014a) Ionic liquid-based actuators working in air: the effect of ambient humidity. Sens Actuator B-Chem 202:114–122

    Article  Google Scholar 

  • Palmre V, Brandell D, Mäeorg U, Torop J, Volobujeva O, Punning A, Johanson U, Kruusmaa M, Aabloo A (2009) Nanoporous carbon-based electrodes for high strain ionomeric bending actuators. Smart Mater Struct 18:095028

    Article  Google Scholar 

  • Punning A, Johanson U, Anton M, Aabloo A, Kruusmaa M (2009) A distributed model of ionomeric polymer metal composite. J Intell Mater Syst Struct 20(14):1711–1724

    Article  Google Scholar 

  • Punning A, Vunder V, Must I, Johanson U, Anbarjafari G, Aabloo A (2016). In situ scanning electron microscopy study of strains of ionic electroactive polymer actuators. J Intell Mater Syst Struct 27(8):1061–1074

    Google Scholar 

  • Simon P, Taberna P, Béguin F (2013) Electrical double-layer capacitors and carbons for EDLCs. In: Béguin F, Frąckowiak E (eds) Supercapacitors: materials, systems, and applications. Wiley, Weinheim, pp 131–165

    Chapter  Google Scholar 

  • Simsek Y, Ozyuzer L, Seyhan AT, Tanoglu M, Schulte K (2007) Temperature dependence of electrical conductivity in double-wall and multi-wall carbon nanotube/polyester nanocomposites. J Mater Sci 42(23):9689–9695

    Article  Google Scholar 

  • Spinks GM, Truong V (2005) Work-per-cycle analysis for electromechanical actuators. Sens Actuator A-Phys 119(2):455–461

    Article  Google Scholar 

  • Sugino T, Kiyohara K, Takeuchi I, Mukai K, Asaka K (2009) Actuator properties of the complexes composed by carbon nanotube and ionic liquid: the effects of additives. Sens Actuator B-Chem 141(1):179–186

    Article  Google Scholar 

  • Takeuchi I, Asaka K, Kiyohara K, Sugino T, Mukai K, Randriamahazaka H (2010) Electrochemical impedance spectroscopy and electromechanical behavior of Bucky-gel actuators containing ionic liquids. J Phys Chem C 114(34):14627–14634

    Article  Google Scholar 

  • Torop J, Arulepp M, Leis J, Punning A, Johanson U, Palmre V, Aabloo A (2009) Nanoporous carbide-derived carbon material-based linear actuators. Materials 3(1):9–25

    Article  Google Scholar 

  • Torop J, Palmre V, Arulepp M, Sugino T, Asaka K, Aabloo A (2011) Flexible supercapacitor-like actuator with carbide-derived carbon electrodes. Carbon 49(9):3113–3119

    Article  Google Scholar 

  • Torop J, Sugino T, Asaka K, Jänes A, Lust E, Aabloo A (2012) Nanoporous carbide-derived carbon based actuators modified with gold foil: prospect for fast response and low voltage applications. Sens Actuator B-Chem 161(1):629–634

    Article  Google Scholar 

  • Vunder V, Punning A, Aabloo A (2012) Mechanical interpretation of back-relaxation of ionic electroactive polymer actuators. Smart Mater Struct 21(11):115023

    Article  Google Scholar 

  • Zhang M, Atkinson KR, Baughman RH (2004) Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306(5700):1358–1361

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrek Must .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Must, I., Spinks, G.M., Aabloo, A. (2016). Electrochemically and Electrothermally Driven Carbon-Based Materials as EAPs: How to Start Experimenting with Them. In: Carpi, F. (eds) Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31530-0_20

Download citation

Publish with us

Policies and ethics