Abstract
The treatment of hydrocephalus or similar diseases requires shunt devices. Thousands of patients live with shunts over decades, in the hope that the regulation of their ICP could improve their physical condition. This chapter discusses the pros and cons of the different types of devices and comprehends the technological development of valves since 1949. The chapter starts with the description of the possibilities for classification and the requirements for shunts, further of their functioning against the background of the physiological preconditions like ICP and normal CSF flowrates. The question is, thereby, which physical factors influence the working of devices, especially how they depend on the posture of patients and how the valve technologies answer those problems. Based on extensive clinical and laboratory studies, the author outlines the most common devices of the last 60 years and discusses simple differential pressure valves as well-adjustable, antisiphon, gravitational, and low-flow valves.
Similar content being viewed by others
References
Abbott R, Sandler AL (2016) Cerebrospinal shunts: selection of components, techniques for insertion and for revision. In: Kombogiorgas D (ed) The cerebrospinal fluid shunts. Nova Biomedical, New York, pp 221–244
Akbar M, Aschoff A, Georgi J, Nennig E, Heiland S, Abel R, Stippich C (2012) Adjustable cerebrospinal fluid shunt valves in 3.0-Tesla MRI: a phantom study using explanted devices. RöFo 2010 187(7):594–602
Alavi S, Schulz M, Schaumann A, Schwarz K, Thomale UW (2017) Valve exchange towards an adjustable differential pressure valve with gravitational unit, clinical outcome of a single-center study. Childs Nerv Syst 33(5):759–765
Ames RH (1967) Ventriculo-peritoneal shunts in the management of hydrocephalus. J Neurosurg 27:525–529
Arnell K, Koskinen LO, Malm J, Eklund A (2009) Evaluation of Strata NSC and Codman hakim adjustable cerebrospinal fluid shunts and their corresponding antisiphon device. J Neurosurg Ped 3(3):166–172
Aschoff A (1995) In-vitro-Tests von Hydrocephalus-Ventilen. Inauguration thesis (in German, 537 pages), University of Heidelberg
Aschoff A, Osterloh M, Kunze S (1990) Longtime-tests of 34 hydrocephalus-Valves. Child’s Nerv Syst 6:282
Aschoff A, Kremer P, Benesch C, Klank A, Kunze S (1991) Shunt-technology and overdrainage. Eur J Pediatr Surg 1(Suppl I):49–50
Aschoff A, Benesch C, Kremer P, Klank A, Osterloh M, Fruh K (1993) The solved and unsolved problems of hydrocephalus-valves. A critical comment. Adv Neurosurg 21:103–114
Aschoff A, Benesch C, Kremer P, Fruh K, Klank A, Kunze S (1995) Overdrainage and shunt-technology. A critical comparison of programmable, hydrostatic and variable-resistance-valves and flow-reducing devices. Childs Nerv Syst 11:193–200
Aschoff A, Kremer P, Hashemi B, Benesch C, Kunze S (1996) Technical design of 130 hydrocephalus valves. An overview on historical, available, and prototype valves. Childs Nerv Syst 12:503
Aschoff A, Kremer P, Hashemi B, Kunze S (1999) The scientific history of hydrocephalus and its treatment. Neurosurg Rev 22:67–93
Aschoff A, Richard KE, Block F, Schnippering H, Kunze S (2001) Shunt-telemetry over 6 weeks at home under daily life conditions. Childs Nerv Syst 17:433–434
Aschoff A, Kiefer M, Kehler U, Hashemi B, UnterbergA (2009) Adjustable gravitational valves. From the conception in 1996 to first implantations 2008. Cerebrospinal Fluid Res 6(Suppl 2):S22
Bayston R, Grove N, Siegel J, Lawellin D, Barsham S (1989) Prevention of hydrocephalus catheter colonisation in vitro by impregnation with antimicrobials. J Neurol Neurosurg Psychiatry 52:605–609
Beez T, Sarikaya-Sewert S, Bellstädt L, Mühmer M, Steiger HJ (2014) Fixed-pressure gravity-assisted valves and adjustable differential pressure valves in the treatment of pediatric hydrocephalus – a single center study of valve performance in the clinical setting. Childs Nerv Syst 30(2):293–7
Benninger C, Schäfer H, Mittermaier G, Wöhrle J, Aschoff A (1992) Liquoraszites bei hydrocephalus hypersecretorius. In: Aktuelle Neuropädiatrie 1992. Ciba-Geigy-Verlag, Wehr, pp 267–269
Bering EA Jr (1955) Choroid plexus and arterial pulsation of cerebrospinal fluid. Arch Neurol Psych 73:165–172
Beuriat PA, Puget S, Cinalli G, Blauwblomme T, Beccaria K, Zerah M, Sainte-Rose C (2017) Hydrocephalus treatment in children: long-term outcome in 975 consecutive patients. J Neurosurg Pediatr 21:1–9
Biedermann N (2011) Langzeitverläufe 10 Jahre nach der Implantation von verstellbaren Medos-Ventilen 1995–1999. Medical thesis, University of Heidelberg
Boon AJW, Tans JTJ, Delwel EJ, Egeler-Peerdeman SM, Hanlo PW, Wurzer HAL, Aavezaat CJJ, de Jong D, Gooskens RHJM, Hermans J (1998) Dutch Normal-Pressure Hydrocephalus Study: randomized comparison of low- and medium pressure shunts. J Neurosurg 88:490–495
Brydon HL, Bayston R, Hyyward R, Harkness W (1996) The effect of protein and blood cells on the flow-pressure characteristics of shunts. Neurosurgery 38:498–505
Cedzich C, Wießner A (2003) The treatment of hydrocephalus in infants and children using hydrostatic valves. Zentralblt Neurochir 64:51–57
Chhabra DK, Agrawal GD, Mittal P (1993) “Z” flow hydrocephalus shunts, a new approach to the problem of hydrocephalus, the rationale behind its design and the initial results of pressure monitoring after “Z” flow shunt implantation. Acta Neurochir 121:43–47
Choux M, Genitori L, Lang D, Lena G (1992) Shunt implantation: reducing the incidence of shunt infection. J Neurosurgery 77:875–880
Codman (1992) Codman-Medos-sales training manual. Codman, Randolph
Czosnyka Z, Czosnyka M, Whitehouse H, Pickard JD (1997) Hydrodynamic properties of hydrocephalus shunts. United Kingdom shunt evaluation laboratory. J Neurol Neurosurg Psychiatry 62:43–50
Czosnyka Z, Czosnyka M, Richards HK, Pickard JD (1998) Posture-related overdrainage: comparison of the performance of 10 hydrocephalus shunts in vitro. Neurosurgery 42:327–334
Czosnyka ZH, Czosnyka M, Richards HK, Pickard JD (2002) Laboratory evaluation of hydrocephalus shunts – conclusion of the U.K. shunt evaluation programme. Acta Neurochir 144:525–538
Decq JL, Barat L, Duplessis E, Leguerinel C, Gendrault P (1995) Shunt failure in adult hydrocephalus: flow-controlled shunt versus differential pressure shunts - a cooperative study in 289 patients. Surg Neurol 43:333–339
Dette K, Hlavac M, Vienenkoetter B, Unterberg A, Aschoff A (2008) Urgent adjustment of variable Medos-, Sophysa- and Miethke-ProGAV-valves with standard permanent magnets. Possibilities and limitations hydrocephalus. Clin Neurol Neurosurg 110(Suppl 1):35
DiRocco C, Marchese E, Velardi F (1994) A survey of the first complication of newly implanted CSF shunt devices for the treatment of nontumoral hydrocephalus. Childs Nerv Syst 10:321–327
Drake JM, Sainte-Rose C (1995) The shunt book. Blackwell Science, Cambridge, MA
Drake JM, daSilva M, Rutka JT (1993) Functional obstruction of an Antisiphon device by raised tissue capsule pressure. Neurosurgery 32:137–139
Drake JM, Kestle JRW, Milner R, Cinalli G et al (1998) Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus. Neurosurgery 43:294–305
Eklund A, Koskinen LOD, Malm J (2004) Features of the Sinushunt and its influence on the cerebrospinal fluid system. J Neurol Neurosurg Psychiatry 75:1156–1159
Ekstedt J, Friden H (1980) Hydrodynamic properties of CSF shunt systems. In: Shulmann K, Marmarou A, Miller JD, Becker DP, Hochwald GM, Brock M (eds) Intracranial pressure IV. Springer, Berlin/Wien/New York, pp 483–485
Elixmann IM, Kwiecien M, Goffin C, Walter M, Misgeld B, Kiefer M, Steudel WI, Radermacher K, Leonhardt S (2014 Sep) Control of an electromechanical hydrocephalus shunt – a new approach. IEEE Trans Biomed Eng 61(9):2379–2388
Eymann R, Steudel WI, Kiefer M (2007) Pediatric gravitational shunts: first results from a prospective study. J Neurosurg Pediatr 106(3 Suppl):179–184
Forrest DM (1962) Flow characteristics of the Spitz-Holter valve. Develop Med Child Neurol 4:295–297
Fox JD, Portnoy HD, Shulte RR (1973) Cerebrospinal fluid shunts: an experimental evaluation of flow rates and pressure values in the anti-siphon valve. Surg Neurol 1:299–302
Freimann FB, Luhdo ML, Rohde V, Vajkoczy P, Wolf S, Sprung C (2014) The Frankfurt horizontal plane as a reference for the implantation of gravitational units: a series of 376 adult patients. Acta Neurochir (Wien) 156(7):1351–6
Goodrich JT (2016) Historical vignettes on the medical and surgical treatment of hydrocephalus. In: Kombogiorgas D (ed) The cerebrospinal fluid shunts. Nova Biomedical, New York, pp 1–20
Gruber RW, Roehrig B (2010) Prevention of ventricular catheter obstruction and slit ventricle syndrome by the prophylactic use of the Integra antisiphon device in shunt therapy for pediatric hypertensive hydrocephalus: a 25-year follow-up study. J Neurosurg Pediatr 5(1):4–16
Gruber R, Jenny P, Herzog B (1984) Experiences with the antisiphon-device (ASD) in shunt therapy of pediatric hydrocephalus. J Neurosurg 61:156–162
Hakim S (1973) Hydraulic and mechanical miss-matching of valve shunts used in the treatment of hydrocephalus: the need for a servo-valve shunt. Dev Med Child Neurol 15:646–653
Hakim CA (1985) The physics and physiopathology of the hydraulic complex of the central nervous system. Thesis, Massachusetts Institute of Technology, Cambridge MA (fig 25)
Hakim S, Hakim C (1984) Patent of the adjustable Medos-Hakim-Valve 21.07.83 US 516137; 08.12.83 US 559864; 0812.83 US 559865; European patent, application no EP 90202828.1, 23.07.84
Hakim S, Duran de la Roche F, Burton JD (1973) A critical analysis of valve shunts used in the treatment of hydrocephalus. Dev Med Child Neurol 15:230–255
Hanlo PW, Cinalli G, Vandertop WP, Faber JA, Bogeskov L, Borgesen SE, Boschert J, Chumas P, Eder H, Pople IK, Serlo W, Vitzthum E (2003) Treatment of hydrocephalus determined by the European Orbis Sigma Valve II survey: a multicenter prospective 5-year shunt survival study in children and adults in whom a flow-regulating shunt was used. J Neurosurg 99(1):52–57
Henle A (1896) Beitrag zur Pathologie und Therapie des Hydrocephalus. Mitteilungen Grenzgebiet Med Chir 1:264–302
Hertle DN, Tilgner J, Fruh K, Keinert T, Hagenston AM, Unterberg A, Aschoff A (2010) Reversible occlusion (on-/off-) valves in shunted tumor patients. Neurosurg Rev 34(2):235–242
Horton DD, Pollay M (1990) Fluid flow performance of a new siphon-control device for ventricular shunts. J Neurosurg 72:926–932
Ingraham FD, Matson DD, Alexander E Jr, Woods RP (1948) Studies in the treatment of experimental hydrocephalus. J Neuropath Exp Neurol 7:123–143
ISO 7197:1989 (E) TC150/SC 3 - N 45 (1989) International Standard: Neurosurgical implants – Sterile, single-use hydrocephalus shunts and components. First edition, 1989-08-01. International Organization for Standardization, Genéva
Jetzki S, Leonhardt S (2018) An electronic implant for hydrocephalus therapy assistance. Conf Proc IEEE Eng Med Biol Soc 2008:715–718
Johanson CE (2016) Physiology and pathology of cerebrospinal fluid: pressure, formation, composition, flow and reabsorption. In: Kombogiorgas D (ed) The cerebrospinal fluid shunts. Nova Biomedical, New York, p 21
Kadowaki C, Hara M, Numoto M, Takeuchi K, Saito I (1995) CSF shunt physics: factors influencing in shunt CSF flow. Childs Nerv Syst 11:203–206
Kehler U, Kiefer M, Eymann R, Wagner W, Tschan CA, Langer N, Rohde V, Ludwig HC, Gliemroth J, Meier U, Lemcke J, Thomale UW, Fritsch M, Krauss JK, Mirzayan MJ, Schuhmann M, Huthmann A (2015) Prosaika: A prospective multicenter registry with the first programmable gravitational device for hydrocephalus shunting. Clin Neurol Neurosurg 137:132–136
Keith HD, Watts C (1983) Testing of cerebrospinal fluid shunt systems under dynamic flow conditions. Med Instrum 17:297–302
Kestle JR, Walker ML for the Strata Investigators (2005) A multicenter prospective cohort study of the STRATA valve for the management of hydrocephalus in pediatric children. J Neurosurg Pediatr 102(2):141–145
Kestle J, Drake J, Milner R et al (2000) Long term follow-up from the shunt design trial. Pediatr Neurosurg 31:230–236
Kiefer M, Eymann R, Meier U (2002) Five years experience with gravitational shunts in chronic hydrocephalus of adults. Acta Neurochir 144:755–767. discussion 767
Kombigiorgas DA (2016) Types and components of cerebrospinal fluid shunts. In: Kombogiorgas D (ed) The cerebrospinal fluid shunts. Nova Biomedical, New York, pp 85–98
Kremer P, Aschoff A, St K (1994) Risks of using siphon-reducing devices. Childs Nerv Syst 10:231–235
Kuffer F, Strub D (1971) Ein ligaturfreier Konnektor für Hydrocephalus-Ventile. (Vorschlag zu einem neuen Ventil). Z Kinderchir 9:293–301
Lemcke J, Meier U, Müller M, Fritsch M, Kiefer M, Eymann R, Schumann M, Speil A, Kehler U, Langer N, Weber F, Remenez V, Stengel D, Ludwig HC, Rohde V (2013) Safety and efficacy of gravitational shunt valves in patients with idiopathic normal pressure hydrocephalus: a pragmatic, randomized, open level multicentre trial (SVASONA). J Neurol Neurosurg & Psychiatry 2013;01–8
Lutz BR, Venkataraman P, Browd SR (2013) New and improved ways to treat hydrocephalus: pursuit of a smart shunt. Surg Neurol Int 4(Suppl 1):S38–S50
Malbrain M, Cheatham M, Kirkpatrick A et al (2006) Results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome. I. Definitions. Intens Care Med 32:1722–1732
Mangano FT, Menendez JA, Habrock T, Narayan P, Leonhard JR, Park TS, Smyth MD (2005) Early programmable valve malfunctions in pediatric hydrocephalus. J Neurosurg Pediatr 103(6 Suppl):501–507
McCullough DC (1986) Symptomatic progressive ventriculomegaly in hydrocephalus with patent shunt and anti-siphon devices. Neurosurgery 4:617–621
Miethke C (2016) Manufacture and function of cerebrospinal fluid shunts. In: Kombogiorgas D (ed) The cerebrospinal fluid shunts. Nova Biomedical, New York, pp 99–220
Miethke C, Affeld K (1994) A new valve for the treatment of hydrocephalus. Biomed Tech 39:181–187
Nulsen FE, Spitz EB (1952) Treatment of hydrocephalus by direct shunt from ventricle to jugular vein. Surg Forum 2:399–403
Oikonomou J, Aschoff A, Hashemi B, Kunze S (1999) New valves – new dangers? 22 valves (38 probes) designed in the nineties in ultralong-term test (365 days). Eur J Pediatric Surg 9(Suppl 1):23–26
Paes N (1996) A new auto-adjusting flow regulating device. Childs Nerv Syst 12:619–625
Park J, Kim GJ, Hwang SK (2007) Valve inclination influences the performance of gravity-assisted valve. Surg Neurol 68:14–18
Patwardhan RV, Nanda A (2005) Implanted ventricular shunts in the United States: the billion-dollar-a-year cost of hydrocephalus treatment. Neurosurgery 56:139–145
Payr E (1908) Drainage der Hirnventrikel mittels frei transplantierter Blutgefäße; Bemerkungen über Hydrocephalus. Arch Clin Chir 87:801–885
Piotrowicz A (2013) Die Hydrocephalusbehandlung mit verstellbaren Medos-Ventilen 1990–1994. Medical thesis, Univ. Heidelberg
Portnoy HD (1989) Pat US 4,867,741 (2003) “Resistive Valve”. Concept study. Personal communication
Portnoy HD, Schulte RR, Fox JL (1973) Antisiphon and reversible occlusion valves for shunting in hydrocephalus and preventing post-shunt subdural hematomas. J Neurosurg 38:729–738
Pudenz RH, Russel FE, Hurd AM, Sheldon CM (1957) Ventriculo-auriculostomy. A technique for shunting cerebrospinal fluid into the right auricle. Preliminary report. J Neurosurg 14:171–179
Raimondi AJ, Robinson JS, Kawanuera K (1977) Complications of ventriculo-peritoneal shunting and a critical comparison of the three-piece and one-piece systems. Childs Brain 3:321–342
Rayport M, Reiss J (1969) Hydrodynamic properties of certain shunt assemblies for the treatment of hydrocephalus. Part 2: pressure flow characteristics of the Spitz-Holter, Pudenz-Heyer, and Cordis-hakim shunt systems. J Neurosurg 30:463–467
Rekate HL (1980) Closed-loop control of intra-cranial pressure. Ann Biomed Eng 8:515–522
Richard KE, Block FR, Ackermann CW, Britten E, Steinberg J, Weber M (1989) Untersuchung des Regelverhaltens von Shuntsystemen zur operativen Behandlung des Hydrocephalus. Abschlußbericht zum Forschungsvorhaben RI 328/3-2 der DFG
Richards H, Seeley H, Pickard J (2007) Are adjustable valves effective? Data from the UK Shunt Registry. Fluids Barriers CNS 4(Suppl 1):S30
Rohde V, Haberl EJ, Ludwig HC, Thomale UW (2009) First experiences with an adjustable gravitational valve in childhood hydrocephalus. J Neurosurg Pediatr 3:90–93
Sainte-Rose Ch (1984) Patent publication, European Patent EP 0 115 973 A1, (05.01.1984
Sainte-Rose C, Hooven MD, Hirsch JF (1987) A new approach in the treatment of hydrocephalus. J Neurosurg 66:213–226
Schiebel P, Unterberg A, Aschoff A (2008) Success rate of adjusting Codman Medos programmable valves by using a new programmer with acoustic device. Clin Neurol Neurosurg 110(Suppl 1):S12
Schoener WF, Verheggen R, Reparon C, Markakis E (1991) Evaluation of shunt failures by compliance analysis and inspection of shunt valves and shunt materials, using microscopic or scanning electron microscopic techniques. In: Matsumoto S, Tamaki N (eds) Hydrocephalus. Pathogenesis and treatment. Springer, Tokyo-Berlin-Heidelberg, pp 452–472
Serlo W, von Wendt L, Heikkinen ES, Heikkinen ER (1986) Ball and spring or core valve for hydrocephalus shunting? Ann Clin Res 18(Suppl 47):103–106
Sobotta J (1946) Atlas der deskriptiven Anatomie des Menschen, Urbahn und Schwarzenberg, Berlin-München-Wien, Fig. 18, p 29
Sotelo J, Rubalcava MA, Gómez-Lata S (1995) A new shunt for hydrocephalus that relies on CSF production rather than on ventricular pressure. Initial clinical experiences. Surg Neurol 43:324–332
Spitz EB (1961) Critical analysis of the ventriculo-vascular shunt in the treatment of hydrocephalus; résumé of statistics. Harvey Cushing Society, Mexico City. (cit. according DeLange 1977)
Sprung C, Miethke C, Shaken K, Lanksch WR (1997) The importance of the dual-switch valve for the treatment of adult normotensive or hypertensive hydrocephalus. Eur J Pediatr Surg 7(Supp1):38–40
Sundström N, Lagebrant M, Eklund A, Koskinen LD, Malm J (2017) Subdural hematomas in 1846 patients with shunted idiopathic normal pressure hydrocephalus: treatment and long-term survival. J Neurosurg. 2017 Oct 27:1–8
Thomale UW, Gebert AF, Haberl H, Schulz M (2013) Shunt survival rates by using adjustable differential pressure valve combined with a gravitational valve (ProGAV) in pediatric neurosurgery. Childs Nerv Syst 29(3):425–431
Trost HA, Claussen G, Heissler H, Gaab MR (1991) Testing the hydrocephalus shunt valve: long term bench test results of various new and implanted hydrocephalus shunt valves. The need for a model for testing shunt valves under physiological conditions. Eur J Pediatr Surg 1(Suppl I):38–40
Tuli S, Drake J, Lawless J, Wigg M, Lamberti-Pasculli M (2000) Risk factors for repeated cerebrospinal shunt failures in pediatric patients with hydrocephalus. J Neurosurg 92:31–38
Vienenkötter B, Unterberg A, Aschoff A (2008) Failures and suboptimal positions of gravitational valves at different implantation sites (retroauricular vs. thoracal). Clin Neurol Neurosurg 110(Suppl 1):S2
Vlach JP, Négre P (2001) Adjustable valves. Future developments. Nerv Syst Child 26:248
Wang VY, Barbarao NM, Lawton MT et al (2007) Complications of lumboperitoneal shunts. Neurosurgery 60:1045–1049
Watts C, Keith HD (1983) Testing the hydrocephalus shunt valve. Childs Brain 10:217–228
Woerdeman PA, Cochrane DD (2014) Disruption of silicone valve housing in a Codman hakim precision valve with integrated Siphonguard. Neurosurg Peditatr 13(5):532–535
Yamada H, Funakoshi T, Ando T, Sakai N, Sakata K (1979) Clinical studies on prevention of overdrainage syndrome after ventriculoperitoneal shunt by use of an antisiphon ball valve. Childs Brain 5:556
Zemack G, Romner B (2001) Seven years of clinical experience with the programmable Codman hakim valve: a retrospective analysis of 583 patients. J Neurosurg 92:941–948
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this entry
Cite this entry
Aschoff, A. (2019). In-Depth View: Functional Characteristics of CSF Shunt Devices (Pros and Cons). In: Di Rocco, C., Pang, D., Rutka, J. (eds) Textbook of Pediatric Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-319-31512-6_26-2
Download citation
DOI: https://doi.org/10.1007/978-3-319-31512-6_26-2
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31512-6
Online ISBN: 978-3-319-31512-6
eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences
Publish with us
Chapter history
-
Latest
In-Depth View: Functional Characteristics of CSF Shunt Devices (Pros and Cons)- Published:
- 02 April 2019
DOI: https://doi.org/10.1007/978-3-319-31512-6_26-2
-
Original
In-Depth View: Functional Characteristics of CSF Shunt Devices (Pros and Cons)- Published:
- 25 September 2017
DOI: https://doi.org/10.1007/978-3-319-31512-6_26-1