Skip to main content

Abstract

A circular bioeconomy requires the use of renewable resources to produce high-value specialty chemicals or pharmaceuticals, and also fine and bulk chemicals. Here, the surfactant market represents an ideal test case, because surfactants can cover diverse product classes ranging from fine to bulk chemicals and thus including large differences in purity and price. Biosurfactants produced by microbes from renewable resources are discussed for decades, and recently, sophorolipids arrived in the market, produced by fermentation of high-performing production strains and combined with simple product purification thus reaching low product prices.

Here, we review the current status of rhamnolipid research and applications. Molecular diversity of rhamnolipids and biochemical pathways involved in their synthesis are presented, and physicochemical parameters governing emulsification, foaming, and other properties of rhamnolipids are summarized, followed by applications in many different industries including the agro and pharma industry. We finish with a patent survey that covers rhamnolipid production and potential applications of these biosurfactants. We also tried to identify knowledge gaps that might limit a more rapid establishment of rhamnolipids in the markets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abalos A, Pinazo A, Infante MR, Casals M, García F, Manresa A (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17:1367–1371

    Article  CAS  Google Scholar 

  • Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdel-Mawgoud AM, Hausmann R, Lepine F, Müller MM, Deziel E (2011) Rhamnolipids: detection, analysis, biosynthesis, genetic regulation, and bioengineering of production. In: Soberon-Chavez G (ed) Biosurfactants, vol 20. Springer-Verlag, Berlin/Heidelberg, pp 13–55

    Chapter  Google Scholar 

  • Abdel-Mawgoud AM, Lepine F, Deziel E (2014) A stereospecific pathway diverts beta-oxidation intermediates to the biosynthesis of rhamnolipid biosurfactants. Chem Biol 21:156–164

    Article  CAS  PubMed  Google Scholar 

  • Andrä J, Rademann J, Howe J, Koch MH, Heine H, Zähringer U, Brandenburg K (2006) Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia (Pseudomonas) plantarii: immune cell stimulation and biophysical characterization. Biol Chem 387:301–310

    Article  PubMed  CAS  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  CAS  PubMed  Google Scholar 

  • Barigou M, Deshpande NS, Wiggers FN (2001) An enhanced electrical resistance technique for foam drainage measurement. Colloid Surf A 189:237–246

    Article  CAS  Google Scholar 

  • Bauer J, Brandenburg K, Zahringer U, Rademann J (2006) Chemical synthesis of a glycolipid library by a solid-phase strategy allows elucidation of the structural specificity of immunostimulation by rhamnolipids. Chem-Eur J 12:7116–7124

    Article  CAS  PubMed  Google Scholar 

  • Behrens B, Engelen J, Tiso T, Blank LM, Hayen H (2016a) Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction. Anal Bioanal Chem 408:2505–2514

    Article  CAS  PubMed  Google Scholar 

  • Behrens B, Helmer PO, Tiso T, Blank LM, Hayen H (2016b) Rhamnolipid biosurfactant analysis using online turbulent flow chromatography-liquid chromatography-tandem mass spectrometry. J Chromatogr A 1465:90–97

    Article  CAS  PubMed  Google Scholar 

  • Behrens B, Baune M, Jungkeit J, Tiso T, Blank LM, Hayen H (2016c) High performance liquid chromatography-charged aerosol detection applying an inverse gradient for quantification of rhamnolipid biosurfactants. J Chromatogr A 1455:125–132

    Article  CAS  PubMed  Google Scholar 

  • Beuker J, Steier A, Wittgens A, Rosenau F, Henkel M, Hausmann R (2016a) Integrated foam fractionation for heterologous rhamnolipid production with recombinant Pseudomonas putida in a bioreactor. AMB Express 6:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beuker J, Barth T, Steier A, Wittgens A, Rosenau F, Henkel M, Hausmann R (2016b) High titer heterologous rhamnolipid production. AMB Express 6:124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bikerman JJ (1973) Foams. Springer, Berlin

    Book  Google Scholar 

  • Blank L, Rosenau F, Wilhelm S, Wittgens A, Tiso T (2013a) Means and methods for rhamnolipid production. WO 2013/041670 A1, HHU Düsseldorf University, TU Dortmund University

    Google Scholar 

  • Blank LM, Küpper B, del Amor Villa EM, Wichmann R, Nowacki C (2013b) Foam adsorption. WO 2013/087674 A1, TU Dortmund University

    Google Scholar 

  • Bordoloi NK, Konwar BK (2008) Microbial surfactant-enhanced mineral oil recovery under laboratory conditions. Colloids Surf B Biointerfaces 63:73–82

    Article  CAS  PubMed  Google Scholar 

  • Bornkessel S, Bröring S, Omta SWF (2014) Analysing indicators of industry convergence in four probiotics innovation value chains. JCNS 14:213–229

    Google Scholar 

  • Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368:413–418

    Article  CAS  Google Scholar 

  • Burger MM, Glaser L, Burton RM (1963) The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa. J Biol Chem 238:2595–2602

    CAS  PubMed  Google Scholar 

  • Burger M, Glaser L, Burton R (1966) Formation of rhamnolipids of Pseudomonas aeruginosa. In: Galluzzi L, Pedro JMB-S, Kroemer G (eds) Methods in enzymology, vol 588. Elsevier Inc., Cambridge/San Diego/Oxford/London, pp 441–445

    Google Scholar 

  • Cao L, Wang Q, Zhang J, Li C, Yan X, Lou X, Xia Y, Hong Q, Li S (2012) Construction of a stable genetically engineered rhamnolipid-producing microorganism for remediation of pyrene-contaminated soil. World J Microbiol Biotechnol 28:2783–2790

    Article  CAS  PubMed  Google Scholar 

  • Cha M, Lee N, Kim M, Kim M, Lee S (2008) Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresour Technol 99:2192–2199

    Article  CAS  PubMed  Google Scholar 

  • Christofi N, Ivshina IB (2002) Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol 93:915–929

    Article  CAS  PubMed  Google Scholar 

  • Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53:224–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costa SGVAO, Nitschke M, Lepine F, Deziel E, Contiero J (2010) Structure, properties and applications of rhamnolipids produced by Pseudomonas aeruginosa L2-1 from cassava wastewater. Process Biochem 45:1511–1516

    Article  CAS  Google Scholar 

  • Costa SG, Deziel E, Lepine F (2011) Characterization of rhamnolipid production by Burkholderia glumae. Lett Appl Microbiol 53:620–627

    Article  CAS  PubMed  Google Scholar 

  • Curran C-S, Bröring S, Leker J (2010) Anticipating converging industries using publicly available data. Technol Forecase Soc 77:385–395

    Article  Google Scholar 

  • Dahrazma B, Mulligan CN, Nieh MP (2008) Effects of additives on the structure of rhamnolipid (biosurfactant): a small-angle neutron scattering (SANS) study. J Colloid Interface Sci 319:590–593

    Article  CAS  PubMed  Google Scholar 

  • Deepika KV, Ramu Sridhar P, Bramhachari PV (2015) Characterization and antifungal properties of rhamnolipids produced by mangrove sediment bacterium Pseudomonas aeruginosa strain KVD-HM52. Biocatal Agric Biotechnol 4:608–615

    Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Déziel E, Lépine F, Dennie D, Boismenu D, Mamer OA, Villemur R (1999) Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim Biophys Acta 1440:244–252

    Article  PubMed  Google Scholar 

  • Díaz De Rienzo MA, Kamalanathan ID, Martin PJ (2016) Comparative study of the production of rhamnolipid biosurfactants by B. thailandensis E264 and P. aeruginosa ATCC 9027 using foam fractionation. Process Biochem 5:820–827

    Article  CAS  Google Scholar 

  • Dobler L, Vilela LF, Almeida RV, Neves BC (2015) Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting. New Biotechnol 33:123–135

    Article  CAS  Google Scholar 

  • Dominguez A, Fernandez A, Gonzalez N, Iglesias E, Montenegro L (1997) Determination of critical micelle concentration of some surfactants by three techniques. JCE 74:1227–1231

    Article  CAS  Google Scholar 

  • Dubeau D, Deziel E, Woods DE, Lepine F (2009) Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol 9:263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dusane DH, Pawar VS, Nancharaiah YV, Venugopalan VP, Kumar AR, Zinjarde SS (2011) Anti-biofilm potential of a glycolipid surfactant produced by a tropical marine strain of Serratia marcescens. Biofouling 27:645–654

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi D, Jansen R, Molinari G, Nimtz M, Johri BN, Wray V (2008) Antimycobacterial serratamolides and diacyl peptoglucosamine derivatives from Serratia sp. J Nat Prod 71:637–641

    Article  CAS  PubMed  Google Scholar 

  • El Zeftawy MAM, Mulligan CN (2011) Use of rhamnolipid to remove heavy metals from wastewater by micellar-enhanced ultrafiltration (MEUF). Sep Purif Technol 77:120–127

    Article  CAS  Google Scholar 

  • Elshikh M, Funston S, Chebbi A, Ahmed S, Marchant R, Banat IM (2017) Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens. New Biotechnol 36:26–36

    Article  CAS  Google Scholar 

  • Fracchia L, Ceresa C, Franzetti A, Cavallo M, Gandolfi I, Hamme JV, Gkorezis P, Marchant R, Banat IM (2014) In: Kosaric N, Sukan FV (eds) Industrial applications of biosurfactants. CRC Press Taylor & Francis Group, Boca Raton, pp 245–268

    Google Scholar 

  • Funston SJ, Tsaousi K, Rudden M, Smyth TJ, Stevenson PS, Marchant R, Banat IM (2016) Characterising rhamnolipid production in Burkholderia thailandensis E264, a non-pathogenic producer. Appl Microbiol Biotechnol 100:7945–7956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautam KK, Tyagi VK (2006) Microbial surfactants: a review. J Oleo Sci 55:155–166

    Article  CAS  Google Scholar 

  • Gehring C, Wessel M, Schaffer S, Thum O (2016) The power of biocatalysis: a one-pot total synthesis of rhamnolipids from butane as the sole carbon and energy source. ChemistryOpen 5:513–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giani C, Wullbrandt D, Rothert R, Meiwes J (1995). Pseudomonas aeruginosa and its use in a process for the biotechnological preparation of L-rhamnose, US5501966: Hoechst Aktiengesellschaft

    Google Scholar 

  • Gogoi D, Bhagowati P, Gogoi P, Bordoloi NK, Rafay B, Dolui SK, Mukherjee AK (2016) Structural and physico-chemical characterization of a dirhamnolipid biosurfactant purified from Pseudomonas aeruginosa: application of crude biosurfactant in enhanced oil recovery. RSC Adv 6:70669–70681

    Article  CAS  Google Scholar 

  • Gran View Research (2015) Biosurfactants market analysis by product and segment forecast to 2020. http://www.grandviewresearch.com/industry-analysis/biosurfactants-industry. Accessed Feb 2017

  • Griffin WC (1949) Classification of surface-active agents by “HLB”. J Soc Cosmet Chem 1:311–326

    Google Scholar 

  • Griffin WC (1954) Calculation of HLB values of non-ionic surfactants. J Soc Cosmet Chem 5:249–256

    Google Scholar 

  • Grosso-Becerra M-V, González-Valdez A, Granados-Martínez M-J, Morales E, Servín-González L, Méndez J-L, Delgado G, Morales-Espinosa R, Ponce-Soto G-Y, Cocotl-Yañez M, Soberón-Chávez G (2016) Pseudomonas aeruginosa ATCC 9027 is a non-virulent strain suitable for mono-rhamnolipids production. Appl Microbiol Biotechnol 10:9995–10004

    Article  CAS  Google Scholar 

  • Gudiña EJ, Rodrigues AI, Alves E, Rosario Domingues M, Teixeira JA, Rodrigues LR (2015) Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Bioresour Technol 177:87–93

    Article  PubMed  CAS  Google Scholar 

  • Gudiña EJ, Rodrigues AI, de Freitas V, Azevedo Z, Teixeira JA, Rodrigues LR (2016) Valorization of agro-industrial wastes towards the production of rhamnolipids. Bioresour Technol 212:144–150

    Article  PubMed  CAS  Google Scholar 

  • Gunther NW, Nuñez A, Fett W, Solaiman DKY (2005) Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl Environ Microbiol 71:2288–2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo YP, Hu YY, Gu RR, Lin H (2009) Characterization and micellization of rhamnolipidic fractions and crude extracts produced by Pseudomonas aeruginosa mutant MIG-N146. J Colloid Interface Sci 331:356–363

    Article  CAS  PubMed  Google Scholar 

  • Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A (2003) Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol Bioeng 81:316–322

    Article  CAS  PubMed  Google Scholar 

  • Haferburg D, Hommel R, Kleber HP, Kluge S, Schuster G, Zschiegner HJ (1987) Antiphytovirale Aktivität von Rhamnolipid aus Pseudomonas aeruginosa. Acta Biotechnol 7:353–356

    Article  CAS  Google Scholar 

  • Hall BH, Jaffe A, Trajtenberg M (2005) Market value and patent citations. Rand J Econ 36:16–38

    Google Scholar 

  • Harvey S, Elashvili I, Valdes JJ, Kamely D, Chakrabarty AM (1990) Enhanced removal of Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant. Biotechnology 8:228–230

    Article  CAS  PubMed  Google Scholar 

  • Hirayama T, Kato I (1982) Novel methyl rhamnolipids from Pseudomonas aeruginosa. FEBS Lett 139:81–85

    Article  CAS  Google Scholar 

  • Hörmann B, Müller MM, Syldatk C, Hausmann R (2010) Rhamnolipid production by Burkholderia plantarii DSM 9509T. Eur J Lipid Sci Technol 112:674–680

    Article  CAS  Google Scholar 

  • Hošková M, Schreiberová O, Ježdík R, Chudoba J, Masák J, Sigler K, Rezanka T (2013) Characterization of rhamnolipids produced by non-pathogenic Acinetobacter and Enterobacter bacteria. Bioresour Technol 130:510–516

    Article  PubMed  CAS  Google Scholar 

  • Hošková M, Ježdík R, Schreiberová O, Chudoba J, Sir M, Cejkova A, Masák J, Jirku V, Rezanka T (2015) Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures. J Biotechnol 10:45–51

    Article  CAS  Google Scholar 

  • Irfan-Maqsood M, Seddiq-Shams M (2014) Rhamnolipids: well-characterized glycolipids with potential broad applicability as biosurfactants. Ind Biotechnol 10:285–291

    Article  CAS  Google Scholar 

  • Ishigami Y, Suzuki S (1997) Development of biochemicals – functionalization of biosurfactants and natural dyes. Prog Org Coat 31:51–61

    Article  CAS  Google Scholar 

  • Ito S, Honda H, Tomita F, Suzuki T (1971) Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin (mixture of C12, C13 and C14 fractions). J Antibiot 24:855–859

    Article  CAS  PubMed  Google Scholar 

  • Jadhav M, Kalme S, Tamboli D, Govindwar S (2011) Rhamnolipid from Pseudomonas desmolyticum NCIM-2112 and its role in the degradation of Brown 3REL. J Basic Microbiol 51:1–12

    Article  CAS  Google Scholar 

  • Jarvis FG, Johnson MJ (1949) A glyco-lipide produced by Pseudomonas aeruginosa. J Am Chem Soc 71:4124–4126

    Article  CAS  Google Scholar 

  • Johann S, Seiler TB, Tiso T, Bluhm K, Blank LM, Hollert H (2016) Mechanism-specific and whole-organism ecotoxicity of mono-rhamnolipids. Sci Total Environ 548–549:155–163

    Article  PubMed  CAS  Google Scholar 

  • Kachholz T, Schlingmann M (1987) Possible food and agricultural application of microbial surfactants: an assessment. In: Kosaric N, Cairns WL, NCC G (eds) Biosurfactants and biotechnology, vol 25. Marcel Decker, New York, pp 183–208

    Google Scholar 

  • Khaje Bafghi M, Fazaelipoor MH (2012) Application of rhamnolipid in the formulation of a detergent. J Surfactant Deterg 15:679–684

    Article  CAS  Google Scholar 

  • Kim SK, Kim YC, Lee S, Kim JC, Yun MY, Kim IS (2011) Insecticidal activity of rhamnolipid isolated from Pseudomonas sp. EP-3 against green peach aphid (Myzus persicae). J Agric Food Chem 59:934–938

    Article  CAS  PubMed  Google Scholar 

  • Kiran GS, Ninawe AS, Lipton AN, Pandian V, Selvin J (2016) Rhamnolipid biosurfactants: evolutionary implications, applications and future prospects from untapped marine resource. Crit Rev Biotechnol 36:399–415

    PubMed  Google Scholar 

  • Klekner V, Kosaric N (1993) Biosurfactants for cosmetics. In: Kosaric N (ed) Biosurfactants: production, properties, applications, vol 48. Dekker, New York, pp 373–389

    Google Scholar 

  • Koehler SA, Hilgenfeldt S, Weeks ER, Stone HA (2004) Foam drainage on the microscale – II. Imaging flow through single plateau borders. J Colloid Interface Sci 276:439–449

    Article  CAS  PubMed  Google Scholar 

  • Kosaric N (2001) Biosurfactants and their application for soil bioremediation. Food Technol Biotechol 39:295–304

    CAS  Google Scholar 

  • Kruijt M, Tran H, Raaijmakers JM (2009) Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267. J Appl Microbiol 107:546–556

    Article  CAS  PubMed  Google Scholar 

  • Kryachko Y, Nathoo S, Lai P, Voordouw J, Prenner EJ, Voordouw G (2013) Prospects for using native and recombinant rhamnolipid producers for microbially enhanced oil recovery. Int Biodeterior Biodegrad 81:133–140

    Article  CAS  Google Scholar 

  • Kügler JH, Le Roes-Hill M, Syldatk C, Hausmann R (2015) Surfactants tailored by the class Actinobacteria. Front Microbiol 6:212

    PubMed  PubMed Central  Google Scholar 

  • Küpper B, Mause A, Halka L, Imhoff A, Nowacki C, Wichmann R (2013) Fermentative Produktion von Monorhamnolipiden im Pilotmaßstab – Herausforderungen der Maßstabsvergrößerung. Chem Ing Tech 85:834–840

    Article  CAS  Google Scholar 

  • Kuppert D, Kottke U, Lattich J, Volk M, Wenk H, Cabirol F, Schilling M, Schaffer S, Allef P (2014) Detergent composition for textiles comprising rhamnolipids having a predominant share of di-rhamnolipids. US2014296125, Evonik

    Google Scholar 

  • Lang S, Trowitzsch-Kienast W (2002) Biotenside. Vieweg+ Teubner Verlag, Stuttgart/Leipzig/Wiesbaden

    Book  Google Scholar 

  • Lang S, Wullbrandt D (1999) Rhamnose lipids – biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Kim MK, Vancanneyt M, Swings J, Kim SH, Kang MS, Lee ST (2005) Tetragenococcus koreensis sp. nov., a novel rhamnolipid-producing bacterium. Int J Syst Evol Microbiol 55:1409–1413

    Article  CAS  PubMed  Google Scholar 

  • Leitermann F, Walter V, Syldatk C, Hausmann R (2010) Rhamnolipids. Springer, Berlin/Heidelberg, pp 3037–3051

    Google Scholar 

  • Linhardt RJ, Bakhit R, Daniels L, Mayerl F, Pickenhagen W (1989) Microbially produced rhamnolipid as a source of rhamnose. Biotechnol Bioeng 33:365–368

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Shao B, Long X, Yao Y, Meng Q (2016) Foliar penetration enhanced by biosurfactant rhamnolipid. Colloids Surf B Biointerfaces 145:548–554

    Article  CAS  PubMed  Google Scholar 

  • Loeschcke A, Thies S (2015) Pseudomonas putida-a versatile host for the production of natural products. Appl Microbiol Biotechnol 99:6197–6214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long XW, Zhang GL, Han L, Meng Q (2013) Dewatering of floated oily sludge by treatment with rhamnolipid. Water Res 47:4303–4311

    Article  CAS  PubMed  Google Scholar 

  • Long XW, Sha RY, Meng Q, Zhang GL (2016) Mechanism study on the severe foaming of rhamnolipid in fermentation. J Surfactant Deterg 19:833–840

    Article  CAS  Google Scholar 

  • Lourith N, Kanlayavattanakul M (2009) Natural surfactants used in cosmetics: glycolipids. Int J Cosmet Sci 31:255–261

    Article  CAS  PubMed  Google Scholar 

  • Lovaglio RB, Silva VL, Ferreira H, Hausmann R, Contiero J (2015) Rhamnolipids know-how: looking for strategies for its industrial dissemination. Biotechnol Adv 33:1715–1726

    Article  CAS  PubMed  Google Scholar 

  • Lunkenheimer K, Malysa K, Winsel K, Geggel K, Siegel S (2010) Novel method and parameters for testing and characterization of foam stability. Langmuir 26:3883–3888

    Article  CAS  PubMed  Google Scholar 

  • Ma K-Y, Sun M-Y, Dong W, He C-Q, Chen F-L, Ma Y-L (2016) Effects of nutrition optimization strategy on rhamnolipid production in a Pseudomonas aeruginosa strain DN1 for bioremediation of crude oil. Biocatal Agric Biotech 6:144–151

    Google Scholar 

  • Magalhães L, Nitschke M (2013) Antimicrobial activity of rhamnolipids against Listeria monocytogenes and their synergistic interaction with nisin. Food Control 29:138–142

    Article  CAS  Google Scholar 

  • Maier RM, Soberon-Chavez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633

    Article  CAS  PubMed  Google Scholar 

  • Makkar RS, Cameotra SS (1998) Production of biosurfactant at mesophilic and thermophilic conditions by a strain of Bacillus subtilis. J Ind Microbiol Biotechnol 20:48–52

    Article  CAS  Google Scholar 

  • Manso Pajarron A, de Koster CG, Heerma W, Schmidt M, Haverkamp J (1993) Structure identification of natural rhamnolipid mixtures by fast atom bombardment tandem mass spectrometry. Glycoconj J 10:219–226

    Article  CAS  PubMed  Google Scholar 

  • Marchant R, Banat IM (2012a) Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol Lett 34:1597–1605

    Article  CAS  PubMed  Google Scholar 

  • Marchant R, Banat IM (2012b) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 30:558–565

    Article  CAS  PubMed  Google Scholar 

  • Marchant R, Funston S, Uzoigwe C, Rahman PKSM, Banat IM (2014) Production of biosurfactants from nonpathogenic bacteria. In: Kosaric N, Sukan FV (eds) Biosurfactants. CRC Press Boca Raton, London/New York, pp 73–81

    Google Scholar 

  • Martinez-Garcia E, Nikel PI, Aparicio T, de Lorenzo V (2014) Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb Cell Fact 13:159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meyer-Hoffert U, Zimmermann A, Czapp M, Bartels J, Koblyakova Y, Gläser R, Schröder J-M, Gerstel U (2011) Flagellin delivery by Pseudomonas aeruginosa rhamnolipids induces the antimicrobial protein psoriasin in human skin. PLoS One 6:e16433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mixich J, Rapp KM, Vogel M (1990). Process for producing rhamnose from rhamnolipids. WO 1992005182, Südzucker AG

    Google Scholar 

  • Moya Ramirez I, Tsaousi K, Rudden M, Marchant R, Jurado Alameda E, Garcia Roman M, Banat IM (2015) Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source. Bioresour Technol 198:231–236

    Article  CAS  PubMed  Google Scholar 

  • Müller MM, Hörmann B, Syldatk C, Hausmann R (2010) Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Appl Microbiol Biotechnol 87:167–174

    Article  PubMed  CAS  Google Scholar 

  • Müller MM, Kügler JH, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M, Syldatk C, Hausmann R (2012) Rhamnolipids – next generation surfactants? J Biotechnol 162:366–380

    Article  PubMed  CAS  Google Scholar 

  • Nalini S, Parthasarathi R (2014) Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent. Bioresour Technol 173:231–238

    Article  CAS  PubMed  Google Scholar 

  • Nardello W, Chailloux N, Poprawski J, Salager JL, Aubry JM (2003) HLD concept as a tool for the characterization of cosmetic hydrocarbon oils. Polym Int 52:602–609

    Article  CAS  Google Scholar 

  • Nguyen TTL, Edelen A, Neighbors B, Sabatini DA (2010) Biocompatible lecithin-based microemulsions with rhamnolipid and sophorolipid biosurfactants: formulation and potential applications. J Colloid Interface Sci 348:498–504

    Article  CAS  PubMed  Google Scholar 

  • Nie M, Yin X, Ren C, Wang Y, Xu F, Shen Q (2010) Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol Adv 28:635–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitschke M, Costa SGVAO (2007) Biosurfactants in food industry. Trends Food Sci Technol 18:252–259

    Article  CAS  Google Scholar 

  • Nitschke M, Costa SGVAO, Contiero J (2005) Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog 21:1593–1600

    Article  CAS  PubMed  Google Scholar 

  • Ochsner UA, Reiser J, Fiechter A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl Environ Microbiol 61:3503–3506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palanisamy P, Raichur AM (2009) Synthesis of spherical NiO nanoparticles through a novel biosurfactant mediated emulsion technique. Mater Sci Eng C-Bio S 29:199–204

    Article  CAS  Google Scholar 

  • Parry A, Parry N, Peilow A, Stevenson P (2012). Combinations of rhamnolipids and enzymes for improved cleaning. WO2012010406, Unilever

    Google Scholar 

  • Paulino BN, Pessoa MG, Mano MCR, Molina G, Neri-Numa IA, Pastore GM (2016) Current status in biotechnological production and applications of glycolipid biosurfactants. Appl Microbiol Biotechnol 100:10265–10293

    Article  CAS  PubMed  Google Scholar 

  • Piljac A, Stipcevic T, Piljac-Zegarac J, Piljac G (2008) Successful treatment of chronic decubitus ulcer with 0.1% dirhamnolipid ointment. J Cutan Med Surg 12:142–146

    Article  CAS  PubMed  Google Scholar 

  • Pornsunthorntawee O, Wongpanit P, Chavadej S, Abe M, Rujiravanit R (2008) Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresour Technol 99:1589–1595

    Article  CAS  PubMed  Google Scholar 

  • Rabaron A, Cave G, Puisieux F, Seiller M (1993) Physical methods for measurement of the HLB of ether and ester nonionic surface-active agents – H-NMR and dielectric constant. Int J Pharm 99:29–36

    Article  CAS  Google Scholar 

  • Raiders RA, Knapp RM, McInerney MJ (1989) Microbial selective plugging and enhanced oil recovery. J Ind Microbiol 4:215–229

    Article  CAS  Google Scholar 

  • Randhawa KKS, Rahman PKSM (2014) Rhamnolipid biosurfactants – past, present, and future scenario of global market. Front Microbiol 5:454

    Google Scholar 

  • Rezanka T, Siristova L, Sigler K (2011) Rhamnolipid-producing thermophilic bacteria of species Thermus and Meiothermus. Extremophiles 15:697–709

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006a) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues LR, Banat IM, van der Mei HC, Teixeira JA, Oliveira R (2006b) Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants. J Appl Microbiol 100:470–480

    Article  CAS  PubMed  Google Scholar 

  • Roelants SL, Saerens KM, Derycke T, Li B, Lin YC, Van de Peer Y, De Maeseneire SL, Van Bogaert IN, Soetaert W (2013) Candida bombicola as a platform organism for the production of tailor-made biomolecules. Biotechnol Bioeng 110:2494–2503

    Article  CAS  PubMed  Google Scholar 

  • Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236

    Article  CAS  PubMed  Google Scholar 

  • Rooney AP, Price NP, Ray KJ, Kuo TM (2009) Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. FEMS Microbiol Lett 295:82–87

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg E, Ron EZ (2013) The Prokaryotes. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds), Biosurfactants. vol 20. Springer, Berlin/Heidelberg, pp 281–294

    Google Scholar 

  • Ross J, Miles GD (1941) An apparatus for comparison of foaming properties of soaps and detergents. Oil & Soap 18:99–102

    Article  CAS  Google Scholar 

  • Rudin AD (1957) Measurement of the foam stability of beers. J Inst Brew 63:506–509

    Article  Google Scholar 

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez M, Aranda FJ, Teruel JA, Ortiz A (2010) New pH-sensitive liposomes containing phosphatidylethanolamine and a bacterial dirhamnolipid. Chem Phys Lipids 164:16–23

    Article  PubMed  CAS  Google Scholar 

  • Sanchez L, Courteaux B, Hubert J, Kauffmann S, Renault J-H, Clément C, Baillieul F, Dorey S (2012) Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in arabidopsis and highlight a central role for salicylic acid. Plant Physiol 160:1630–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaffer S, Wessel M, Thiessenhusen A, Stein N (2012) Cells and methods for the preparation of rhamnolipids. US9005928, Evonik

    Google Scholar 

  • Scheibenbogen K, Zytner RG, Lee H, Trevors JT (1994) Enhanced removal of selected hydrocarbons from soil by Pseudomonas aeruginosa UG2 biosurfactants and some chemical surfactants. J Chem Technol Biotechnol 59:53–59

    Article  CAS  Google Scholar 

  • Schenk T, Breitschwerdt A, Kessels G, Schuphan I, Schimdt B (1997) A biosynthetic route to [14C]-labelled rhamnolipids. J Labellled Compd Radiopharm 39:705–710

    Article  CAS  Google Scholar 

  • Schmidts T, Dobler D, Guldan AC, Paulus N, Runkel F (2010) Multiple W/O/W emulsions – using the required HLB for emulsifier evaluation. Colloids Surf A 372:48–54

    Article  CAS  Google Scholar 

  • Setoodeh P, Jahanmiri A, Eslamloueyan R, Niazi A, Ayatollahi SS, Aram F, Mahmoodi M, Hortamani A (2014) Statistical screening of medium components for recombinant production of Pseudomonas aeruginosa ATCC 9027 rhamnolipids by nonpathogenic cell factory Pseudomonas putida KT2440. Mol Biotechnol 56:175–191

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Jansen R, Nimtz M, Johri BN, Wray V (2007a) Rhamnolipids from the rhizosphere bacterium Pseudomonas sp. GRP3 that reduces damping-off disease in chilli and tomato nurseries. J Nat Prod 70:941–947

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Wray V, Johri BN (2007b) Rhizosphere Pseudomonas sp. strains reduce occurrence of pre- and post-emergence damping-off in chile and tomato in central Himalayan region. Arch Microbiol 187:321–335

    Article  CAS  PubMed  Google Scholar 

  • Siemann-Herzberg M, Wagner F (1993) Prospects and limits for the production of biosurfactants using immobilized biocatalysts. In: Kosaric N (ed) Biosurfactants, vol 48. Marcel Dekker Inc., New York

    Google Scholar 

  • da Silva VL, Lovaglio RB, Tozzi HH, Takaki M, Contiero J (2015) Rhamnolipids: a new application in seeds development. JMBSR 1:100–106

    Google Scholar 

  • Singh AK, Cameotra SS (2014) Influence of microbial and synthetic surfactant on the biodegradation of atrazine. Environ Sci Pollut Res 21:2088–2097

    Article  CAS  Google Scholar 

  • Smith DDN, Nickzad A, Déziel E, Stavrinides J (2016) A novel glycolipid biosurfactant confers grazing resistance upon Pantoea ananatis BRT175 against the social amoeba Dictyostelium discoideum. mSphere 1:e00075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth TJP, Perfumo A, McClean S (2010) Handbook of Hydrocarbon and Lipid Microbiology. In: Timmis KN (ed) Isolation and analysis of lipopeptides and high molecular weight biosurfactants. Springer, Berlin/Heidelberg, pp 3687–3704

    Google Scholar 

  • Soberón-Chávez G, Maier R (2011) Biosurfactants: a general overview. In: Soberón-Chávez G (ed), Biosurfactants, vol 20. Springer, Berlin/Heidelberg, pp 1–11

    Google Scholar 

  • Solaiman DKY, Ashby RD, Gunther NW, Zerkowski JA (2015) Dirhamnose-lipid production by recombinant nonpathogenic bacterium Pseudomonas chlororaphis. Appl Microbiol Biotechnol 99:4333–4342

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Sun R, Zhao K, Pan X, Zhou H, Li D (2015) An induction current method for determining the critical micelle concentration and the polarity of surfactants. Colloid Polym Sci 293:1525–1534

    Article  CAS  Google Scholar 

  • Sotirova AV, Spasova DI, Galabova DN, Karpenko E, Shulga A (2008) Rhamnolipid-biosurfactant permeabilizing effects on Gram-positive and Gram-negative bacterial strains. Curr Microbiol 56:639–644

    Article  CAS  PubMed  Google Scholar 

  • Stipcevic T, Piljac A, Piljac G (2006) Enhanced healing of full-thickness burn wounds using di-rhamnolipid. Burns 32:24–34

    Article  PubMed  Google Scholar 

  • Syldatk C, Lang S, Wagner F, Wray V, Witte L (1985) Chemical and physical characterization of 4 interfacial-active rhamnolipids from Pseudomonas Spec. DSM 2874 grown on normal-alkanes. Z Naturforsch C Bio Sci 40:51–60

    CAS  Google Scholar 

  • Tavares LF, Silva PM, Junqueira M, Mariano DC, Nogueira FC, Domont GB, Freire DM, Neves BC (2013) Characterization of rhamnolipids produced by wild-type and engineered Burkholderia kururiensis. Appl Microbiol Biotechnol 97:1909–1921

    Article  CAS  PubMed  Google Scholar 

  • Thavasi R, Sharma S, Jayalakshmi S (2011) Evaluation of screening methods for the isolation of biosurfactant producing marine bacteria. J Pet Environ Biotechnol S1:1–6

    Google Scholar 

  • Thies S, Santiago-Schübel B, Kovačić F, Rosenau F, Hausmann R, Jaeger K-E (2014) Heterologous production of the lipopeptide biosurfactant serrawettin W1 in Escherichia coli. J Biotechnol 181:27–30

    Article  CAS  PubMed  Google Scholar 

  • Thies S, Rausch SC, Kovacic F, Schmidt-Thaler A, Wilhelm S, Rosenau F, Daniel R, Streit W, Pietruszka J, Jaeger K-E (2016) Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community. Sci Rep 6:27035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiso T, Wierckx N, Blank LM (2014) Non-pathogenic Pseudomonas as platform for industrial biocatalysis. In: Grunwald P (ed) Industrial Biocatalysis. Pan Stanford, Singapore, pp 323–372

    Google Scholar 

  • Tiso T, Germer A, Küpper B, Wichmann R, Blank LM (2015) Methods for recombinant rhamnolipid production. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and lipid microbiology protocols. Humana Press, Berlin/Heidelberg, pp 1–30

    Google Scholar 

  • Tiso T, Sabelhaus P, Behrens B, Wittgens A, Rosenau F, Hayen H, Blank LM (2016) Creating metabolic demand as an engineering strategy in Pseudomonas putida – rhamnolipid synthesis as an example. Metab Eng Commun 3:234–244

    Article  Google Scholar 

  • Toribio J, Escalante AE, Soberón-Chávez G (2010) Rhamnolipids: production in bacteria other than Pseudomonas aeruginosa. Eur J Lipid Sci Technol 112:1082–1087

    Article  CAS  Google Scholar 

  • Toribio J, Escalante AE, Caballero-Mellado J, González-González A, Zavala S, Souza V, Soberón-Chávez G (2011) Characterization of a novel biosurfactant producing Pseudomonas koreensis lineage that is endemic to Cuatro Ciénegas Basin. Syst Appl Microbiol 34:531–535

    Article  CAS  PubMed  Google Scholar 

  • Trippe A (2015) Guidelines for preparing patent landscape reports. http://www.wipo.int/edocs/pubdocs/en/wipo_pub_946.pdf. Accessed Feb 2017

  • Van Dyke MI, Lee H, Trevors JT (1991) Applications of microbial surfactants. Biotechnol Adv 9:241–252

    Article  PubMed  Google Scholar 

  • Van Dyke MI, Couture P, Brauer M, Lee H, Trevors JT (1993) Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil. Can J Microbiol 39:1071–1078

    Article  PubMed  Google Scholar 

  • Varjani SJ, Upasani VN (2016) Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: production, characterization and surface active properties of biosurfactant. Bioresour Technol 221:510–516

    Article  CAS  PubMed  Google Scholar 

  • Vatsa P, Sanchez L, Clement C, Baillieul F, Dorey S (2010) Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. Int J Mol Sci 11:5096–5109

    Article  CAS  Google Scholar 

  • Voget S, Knapp A, Poehlein A, Vollstedt C, Streit W, Daniel R, Jaeger K-E (2015) Complete genome sequence of the lipase producing strain Burkholderia glumae PG1. J Biotechnol 204:3–4

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Gong L, Liang S, Han X, Zhu C, Li Y (2005) Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa. Harmful Algae 4:433–443

    Article  CAS  Google Scholar 

  • Wigneswaran V, Nielsen KF, Sternberg C, Jensen PR, Folkesson A, Jelsbak L (2016) Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440. Microb Cell Factories 15:181–181

    Article  Google Scholar 

  • Wittgens A, Tiso T, Arndt TT, Wenk P, Hemmerich J, Müller C, Wichmann R, Küpper B, Zwick M, Wilhelm S, Hausmann R, Syldatk C, Rosenau F, Blank LM (2011) Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microb Cell Factories 10:80

    Article  CAS  Google Scholar 

  • Wittgens A, Kovacic F, Müller MM, Gerlitzki M, Santiago-Schübel B, Hofmann D, Tiso T, Blank LM, Henkel M, Hausmann R, Syldatk C, Wilhelm S, Rosenau F (2017) Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Appl Microbiol Biotechnol 101:2865–2878

    Google Scholar 

  • Witthayapanyanon A, Harwell JH, Sabitini DA (2008) Hydrophilic-lipophilic deviation (HLD) method for characterizing conventional and extended surfactants. J Colloid Interface Sci 325:259–266

    Article  CAS  PubMed  Google Scholar 

  • Yan P, Lu M, Yang Q, Zhang H-L, Zhang Z-Z, Chen R (2012) Oil recovery from refinery oily sludge using a rhamnolipid biosurfactant-producing Pseudomonas. Bioresour Technol 116:24–28

    Article  CAS  PubMed  Google Scholar 

  • Youssef NH, Duncan KE, McInerney MJ (2005) Importance of 3-hydroxy fatty acid composition of lipopeptides for biosurfactant activity. Appl Environ Microbiol 71:7690–7695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Ju LK (2011) Rhamnolipids as affinity foaming agent for selective collection of beta-glucosidase from cellulase enzyme mixture. Enzyme Microb Technol 48:175–180

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Deutsche Bundesstiftung Umwelt (DBU) is gratefully acknowledged for providing financial support.

This work was partially funded by the Cluster of Excellence “Tailor-Made Fuels from Biomass” (TMFB), which is funded by the Excellence Initiative of the German federal and state governments to promote science and research at German universities.

The scientific activities of the Bioeconomy Science Center were financially supported by the Ministry of Innovation, Science, and Research within the framework of the NRW Strategieprojekt BioSC (No. 313/323-400-002 13).

The authors have received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 633962 for the project P4SB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Mathias Blank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Tiso, T. et al. (2017). Rhamnolipids: Production, Performance, and Application. In: Lee, S. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-31421-1_388-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31421-1_388-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31421-1

  • Online ISBN: 978-3-319-31421-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics