Skip to main content

Abstract

Microalgae are emerging as excellent platforms for producing biofuels, chemicals, and other bioactive molecules. They are collection of distant photosynthetic organisms along the long evolutionary track from prokaryotes to multicellular eukaryotes. Quite different from familiar organisms such as bacteria, plants, and animals, they present challenges for research and industrial applications. On the other hand, their diverse characters offer unique opportunities for new products with higher efficiency. They are primary producers of glycerolipids, carotenoids, and other valuable chemicals, of which successful production necessitate understanding of their physiology and genetics. Fortunately, many of these have been found in microalgae, and biological research is following up to improve production of these materials in microalgae. Many microalgae have excellent carbon storage mechanisms for carbohydrates and/or lipids. Lipids in particular represent a wide variety of glycerolipids and carotenoids that can be converted to biofuels and nutraceutical ingredients. Their residues can also be used as feeds or processed to provide carbons for secondary production of value-added products such as fucose from other organisms. It should also be noted that microalgae can be an excellent host for production of recombinant proteins with pharmaceutical or therapeutic values. This review summarizes chemicals, biofuels, and other value-added products that can be produced from microalgae and present improvements and prospects on their successful production in large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adarme-Vega TC, Lim DK, Timmins M, Vernen F, Li Y, Schenk PM (2012) Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Fact 11:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen E, Moing A, Wattis JA, Larson T, Maucourt M, Graham IA, Rolin D, Hooks MA (2011) Evidence that ACN1 (acetate non-utilizing 1) prevents carbon leakage from peroxisomes during lipid mobilization in Arabidopsis seedlings. Biochemistry J437:505–513

    Article  CAS  Google Scholar 

  • Antal TK, Krendeleva TE, Rubin AB (2011) Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production. Appl Microbiol Biotechnol 89:3–15

    Article  CAS  PubMed  Google Scholar 

  • Antal TK, Krendeleva TE, Tyystjarvi E (2015) Multiple regulatory mechanisms in the chloroplast of green algae: relation to hydrogen production. Photosynth Res 125:357–381

    Article  CAS  PubMed  Google Scholar 

  • Baek K, Kim DH, Jeong J, Sim SJ, Melis A, Kim JS, Jin E, Bae S (2016) DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci Rep 6:30620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baud S, Wuilleme S, To A, Rochat C, Lepiniec L (2009) Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J 60:933–947

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae-their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Brooks SA (2004) Appropriate glycosylation of recombinant proteins for human use: implications of choice of expression system. Mol Biotechnol 28:241–255

    Article  CAS  PubMed  Google Scholar 

  • Casal C, Cuaresma M, Vega JM, Vilchez C (2011) Enhanced productivity of a lutein-enriched novel acidophile microalga grown on urea. Mar Drugs 9:29–42

    Article  CAS  Google Scholar 

  • Chacón-Lee TL, González-Mariño GE (2010) Microalgae for “healthy” goods-possibilities and challenges. Compr Rev Food Sci Food 9:655–675

    Article  Google Scholar 

  • Chaturvedi R, Fujita Y (2006) Isolation of enhanced eicosapentaenoic acid producing mutants of Nannochloropsis oculata ST-6 using ethyl methane sulfonate induced mutagenesis techniques and their characterization at mRNA transcript level. Phycol Res 54:208–219

    Article  CAS  Google Scholar 

  • Chebolu S, Daniell H (2009) Chloroplast-derived vaccine antigens and biopharmaceuticals: expression, folding, assembly and functionality. Curr Top Microbiol Immunol 332:33–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CY, Chen YC, Huang HC, Ho SH, Chang JS (2015a) Enhancing the production of eicosapentaenoic acid (EPA) from Nannochloropsis oceanica CY2 using innovative photobioreactors with optimal light source arrangements. Bioresour Technol 191:407–413

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Hu J, Qiao Y, Chen W, Rong J, Zhang Y, He C, Wang Q (2015b) Ca 2+-regulated cyclic electron flow supplies ATP for nitrogen starvation-induced lipid biosynthesis in green alga. Sci Rep 5:15117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838

    Article  CAS  PubMed  Google Scholar 

  • Choi Y-J, Jo W-S, Kim H-J, Nam B-H, Kang E-Y, S-J O, Lee G-A, Jeong M-H (2010) Anti-inflammatory effect of Chlorella ellipsoidea extracted from seawater by organic solvents. Korean J Fish Aquat Sci 43:39–45

    CAS  Google Scholar 

  • Choi KS, Ryu JH, Park DJ, Oh SC, Kwak H (2015) Lipid extraction from Nannochloropsis sp. microalgae for biodiesel production using supercritical carbon dioxide. Korean Chem Eng Res 53:205–210

    Article  CAS  Google Scholar 

  • Cordero BF, Obraztsova I, Couso I, Leon R, Vargas MA, Rodriguez H (2011) Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Mar Drugs 9:1607–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidi L, Levin Y, Ben-Dor S, Pick U (2015) Proteome analysis of cytoplasmatic and plastidic beta-carotene lipid droplets in Dunaliella bardawil. Plant Physiol 167:60–79

    Article  CAS  PubMed  Google Scholar 

  • Davies FK, Jinkerson RE, Posewitz MC (2015) Toward a photosynthetic microbial platform for terpenoid engineering. Photosynth Res 123:265–284

    Article  CAS  PubMed  Google Scholar 

  • Del Campo JA, Rodriguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2004) Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 64:848–854

    Article  PubMed  CAS  Google Scholar 

  • Del Campo JA, Garcia-Gonzalez M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174

    Article  CAS  PubMed  Google Scholar 

  • Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306

    Article  CAS  PubMed  Google Scholar 

  • DOE (2016) National algal biofuels technology review. In: U.S. Department of Energy OoEEaRE, Bioenergy Technologies Office (ed). DOE (U.S. Department of Energy), Washington, DC, pp 1–212

    Google Scholar 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Yan C, Andre C, Shanklin J, Schwender J, Xu C (2012) Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Plant Cell Physiol 53:1380–1390

    Article  CAS  PubMed  Google Scholar 

  • Feng S, Xue L, Liu H, Lu P (2009) Improvement of efficiency of genetic transformation for Dunaliella salina by glass beads method. Mol Biol Rep 36:1433–1439

    Article  CAS  PubMed  Google Scholar 

  • Galloway CA, Sowden MP, Smith HC (2003) Increasing the yield of soluble recombinant protein expressed in E. coli by induction during late log phase. BioTechniques 34:524–530

    CAS  PubMed  Google Scholar 

  • Garcia-Malea MC, Acien FG, Del Rio E, Fernandez JM, Ceron MC, Guerrero MG, Molina-Grima E (2009) Production of astaxanthin by Haematococcus pluvialis: taking the one-step system outdoors. Biotechnol Bioeng 102:651–657

    Article  CAS  PubMed  Google Scholar 

  • Ghirardi ML, Posewitz MC, Maness PC, Dubini A, Yu J, Seibert M (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Biol 58:71–91

    Article  CAS  PubMed  Google Scholar 

  • Gimpel JA, Henriquez V, Mayfield SP (2015) In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Front Microbiol 6:1376

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong J, You FQ (2015) Value-added chemicals from microalgae: greener, more economical, or both? ACS Sustain Chem Eng 3:82–96

    Article  CAS  Google Scholar 

  • Gupta SK, Kumari S, Reddy K, Bux F (2013) Trends in biohydrogen production: major challenges and state-of-the-art developments. Environ Technol 34:1653–1670

    Article  PubMed  CAS  Google Scholar 

  • Hadley KB, Ryan AS, Nelson EB, Salem N Jr (2010) Preclinical safety evaluation in rats using a highly purified ethyl ester of algal-docosahexaenoic acid. Food Chem Toxicol 48:2778–2784

    Article  CAS  PubMed  Google Scholar 

  • Hawkins RL, Nakamura M (1999) Expression of human growth hormone by the eukaryotic alga, Chlorella. Curr Microbiol 38:335–341

    Article  CAS  PubMed  Google Scholar 

  • He DM, Qian KX, Shen GF, Zhang ZF, Li YN, Su ZL, Shao HB (2007) Recombination and expression of classical swine fever virus (CSFV) structural protein E2 gene in Chlamydomonas reinhardtii chloroplasts. Colloid Surf B55:26–30

    Article  CAS  Google Scholar 

  • Hejazi MA, Holwerda E, Wijffels RH (2004) Milking microalga Dunaliella salina for beta-carotene production in two-phase bioreactors. Biotechnol Bioeng 85:475–481

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Huang TY, Lu WC, Chu IM (2012) A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22:6 proportions in total fatty acid. Bioresour Technol 123:8–14

    Article  CAS  PubMed  Google Scholar 

  • Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed Eng 46:7184–7201

    Article  CAS  Google Scholar 

  • Jamers A, Blust R, De Coen W (2009) Omics in algae: paving the way for a systems biological understanding of algal stress phenomena? Aquat Toxicol 92:114–121

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Han DX, Gerken HG, Li YT, Sommerfeld M, Hu Q, Xu J (2015) Molecular mechanisms for photosynthetic carbon partitioning into storage neutral lipids in Nannochloropsis oceanica under nitrogen-depletion conditions. Algal Res 7:66–77

    Article  Google Scholar 

  • Johnson X, Alric J (2012) Interaction between starch breakdown, acetate assimilation, and photosynthetic cyclic electron flow in Chlamydomonas reinhardtii. J Biol Chem 287:26445–26452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot Cell 12:776–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang NK, Jeon S, Kwon S, Koh HG, Shin SE, Lee B, Choi GG, Yang JW, B-r J, Chang YK (2015) Effects of overexpression of a bHLH transcription factor on biomass and lipid production in Nannochloropsis salina. Biotechnol Biofuels 8:200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kathiresan S, Chandrashekar A, Ravishankar GA, Sarada R (2015) Regulation of astaxanthin and its intermediates through cloning and genetic transformation of beta-carotene ketolase in Haematococcus pluvialis. J Biotechnol 196–197:33–41

    Article  PubMed  CAS  Google Scholar 

  • Kaye Y, Grundman O, Leu S, Zarka A, Zorin B, Didi-Cohen S, Khozin-Goldberg I, Boussiba S (2015) Metabolic engineering toward enhanced LC-PUFA biosynthesis in Nannochloropsis oceanica: overexpression of endogenous Δ12 desaturase driven by stress-inducible promoter leads to enhanced deposition of polyunsaturated fatty acids in TAG. Algal Res 11:387–398

    Article  Google Scholar 

  • Kilian O, Benemann CS, Niyogi KK, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci USA 108:21265–21269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15:321–334

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Kim YT, Cho JJ, Bae JH, Hur SB, Hwang I, Choi TJ (2002) Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Mar Biotechnol 4:63–73

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Koo BS, Lee DH (2014) A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed. Bioresour Technol 162:96–102

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Joo HW, Park J, Kim DK, Jeong KJ, Chang YK (2015) Production of 2, 3-butanediol by Klebsiella oxytoca from various sugars in microalgal hydrolysate. Biotechnol Prog 31:1669–1675

    Article  CAS  PubMed  Google Scholar 

  • Kolesárová N, Hutňan M, Bodík I, Špalková V (2011) Utilization of biodiesel by-products for biogas production. J Biomed Biotechnol 2011:126798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga – Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166:731–738

    Article  CAS  Google Scholar 

  • Kumar G, Mudhoo A, Sivagurunathan P, Nagarajan D, Ghimire A, Lay C-H, Lin C-Y, Lee D-J, Chang J-S (2016) Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production. Bioresour Technol 219:725–737

    Article  CAS  PubMed  Google Scholar 

  • Kumaraswamy GK, Guerra T, Qian X, Zhang SY, Bryant DA, Dismukes GC (2013) Reprogramming the glycolytic pathway for increased hydrogen production in cyanobacteria: metabolic engineering of NAD(+)-dependent GAPDH. Energy Environ Sci 6:3722–3731

    Article  CAS  Google Scholar 

  • Kwak M, Park WK, Shin SE, Koh HG, Lee B, Jeong Br, Chang YK (2017) Improvement of biomass and lipid yield under stress conditions by using diploid strains of Chlamydomonas reinhardtii. Algal Research 26, 180–189

    Google Scholar 

  • Lauersen KJ, Willamme R, Coosemans N, Joris M, Kruse O, Remacle C (2016) Peroxisomal microbodies are at the crossroads of acetate assimilation in the green microalga Chlamydomonas reinhardtii. Algal Res 16:266–274

    Article  Google Scholar 

  • Li Y, Sommerfeld M, Chen F, Hu Q (2010) Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus Pluvialis (Chlorophyceae). J Appl Phycol l22:253–263

    Article  CAS  Google Scholar 

  • Li Y, Zhou W, Hu B, Min M, Chen P, Ruan RR (2011a) Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors. Bioresour Technol 102:10861–10867

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Han D, Sommerfeld M, Hu Q (2011b) Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour Technol 102:123–129

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Sun Z, Gerken H, Huang J, Jiang Y, Chen F (2014) Genetic engineering of the green alga Chlorella zofingiensis: a modified norflurazon-resistant phytoene desaturase gene as a dominant selectable marker. Appl Microbiol Biotechnol 98:5069–5079

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Lei J, He J, Deng L, Wang L, Fan K, Rong L (2015) Hydroprocessing of jatropha oil for production of green diesel over non-sulfided Ni-PTA/al2O3 catalyst. Sci Rep 5:11327

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, He J, Wang L, Li R, Chen P, Rao X, Deng L, Rong L, Lei J (2016) NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil. Sci Rep 6:23667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv X, Xie W, Lu W, Guo F, Gu J, Yu H, Ye L (2014) Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy. J Biotechnol 186:128–136

    Article  CAS  PubMed  Google Scholar 

  • MacDougall KM, McNichol J, McGinn PJ, O’Leary SJ, Melanson JE (2011) Triacylglycerol profiling of microalgae strains for biofuel feedstock by liquid chromatography-high-resolution mass spectrometry. Anal Bioanal Chem 401:2609–2616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maoka T (2011) Carotenoids in marine animals. Mar Drugs 9:278–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama M, Horakova I, Honda H, Xing XH, Shiragami N, Unno H (1994) Introduction of foreign DNA into Chlorella Saccharophila by electroporation. Biotechnol Tech 8:821–826

    Article  CAS  Google Scholar 

  • Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci USA 100:438–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molnár I, Lopez D, Wisecaver JH, Devarenne TP, Weiss TL, Pellegrini M, Hackett JD (2012) Bio-crude transcriptomics: gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa). BMC Genomics 13:576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oncel SS, Kose A, Faraloni C, Imamoglu E, Elibol M, Torzillo G, Sukan FV (2014) Biohydrogen production using mutant strains of Chlamydomonas reinhardtii: the effects of light intensity and illumination patterns. Biochem Eng J 92:47–52

    Article  CAS  Google Scholar 

  • Park J, Hong SK, Chang YK (2015) Production of DagA and ethanol by sequential utilization of sugars in a mixed-sugar medium simulating microalgal hydrolysate. Bioresour Technol 191:414–419

    Article  CAS  PubMed  Google Scholar 

  • Peng B, Yao Y, Zhao C, Lercher JA (2012) Towards quantitative conversion of microalgae oil to diesel-range alkanes with bifunctional catalysts. Angew Chem 51:2072–2075

    Article  CAS  Google Scholar 

  • Polle JE, Neofotis P, Huang A, Chang W, Sury K, Wiech EM (2014) Carbon partitioning in green algae (Chlorophyta) and the enolase enzyme. Meta 4:612–628

    Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  PubMed  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasala BA, Mayfield SP (2015) Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth Res 123:227–239

    Article  CAS  PubMed  Google Scholar 

  • Rasala BA, Muto M, Lee PA, Jager M, Cardoso RM, Behnke CA, Kirk P, Hokanson CA, Crea R, Mendez M, Mayfield SP (2010) Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 8:719–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razeghifard R (2013) Algal biofuels. Photosynth Res 117:207–219

    Article  CAS  PubMed  Google Scholar 

  • Robota HJ, Alger JC, Shafer L (2013) Converting algal triglycerides to diesel and HEFA jet fuel fractions. Energy Fuel 27:985–996

    Article  CAS  Google Scholar 

  • Roleda MY, Slocombe SP, Leakey RJ, Day JG, Bell EM, Stanley MS (2012) Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresour Technol 129C:439–449

    Google Scholar 

  • Sanchez JF, Fernandez-Sevilla JM, Acien FG, Ceron MC, Perez-Parra J, Molina-Grima E (2008) Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbiol Biotechnol 79:719–729

    Article  CAS  PubMed  Google Scholar 

  • Satyanarayana KG, Mariano AB, Vargas JVC (2011) A review on microalgae, a versatile source for sustainable energy and materials. Int J Energy Res 35:291–311

    Article  Google Scholar 

  • Shi XM, Jiang Y, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 18:723–727

    Article  CAS  PubMed  Google Scholar 

  • Shin SE, Lim JM, Koh HG, Kim EK, Kang NK, Jeon S, Kwon S, Shin WS, Lee B, Hwangbo K, Kim J, Ye SH, Yun JY, Seo H, Oh HM, Kim KJ, Kim JS, Jeong WJ, Chang YK, Jeong B-r (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somchai P, Jitrakorn S, Thitamadee S, Meetam M, Saksmerprome V (2016) Use of microalgae Chlamydomonas reinhardtii for production of double-stranded RNA against shrimp virus. Aquacult Rep 3:178–183

    Article  Google Scholar 

  • Song W, Rashid N, Choi W, Lee K (2011) Biohydrogen production by immobilized Chlorella sp. using cycles of oxygenic photosynthesis and anaerobiosis. Bioresour Technol 102:8676–8681

    Article  CAS  PubMed  Google Scholar 

  • Specht E, Miyake-Stoner S, Mayfield S (2010) Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 32:1373–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukenik A (1991) Ecophysiological considerations in the optimization of eicosapentaenoic acid production by Nannochloropsis Sp (Eustigmatophyceae). Bioresour Technol 35:263–269

    Article  CAS  Google Scholar 

  • Talebi AF, Tohidfar M, Bagheri A, Lyon SR, Salehi-Ashtiani K, Tabatabaei M (2014) Manipulation of carbon flux into fatty acid biosynthesis pathway in Dunaliella salina using AccD and ME genes to enhance lipid content and to improve produced biodiesel quality. Biofuel Res J 1:91–97

    Article  CAS  Google Scholar 

  • Vardon DR, Sharma BK, Jaramillo H, Kim D, Choe JK, Ciesielski PN, Strathmann TJ (2014) Hydrothermal catalytic processing of saturated and unsaturated fatty acids to hydrocarbons with glycerol for in situ hydrogen production. Green Chem 16:1507–1520

    Article  CAS  Google Scholar 

  • Vieler A, Wu G, Tsai CH, Bullard B, Cornish AJ, Harvey C, Reca IB, Thornburg C, Achawanantakun R, Buehl CJ, Campbell MS, Cavalier D, Childs KL, Clark TJ, Deshpande R, Erickson E, Armenia Ferguson A, Handee W, Kong Q, Li X, Liu B, Lundback S, Peng C, Roston RL, Sanjaya SJP, Terbush A, Warakanont J, Zauner S, Farre EM, Hegg EL, Jiang N, Kuo MH, Lu Y, Niyogi KK, Ohlrogge J, Osteryoung KW, Shachar-Hill Y, Sears BB, Sun Y, Takahashi H, Yandell M, Shiu SH, Benning C (2012) Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP 1779. PLoS Genet 8:e1003064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volgusheva A, Kruse O, Styring S, Mamedov F (2016) Changes in the photosystem II complex associated with hydrogen formation in sulfur deprived Chlamydomonas reinhardtii. Algal Res 18:296–304

    Article  Google Scholar 

  • Vorapreeda T, Thammarongtham C, Cheevadhanarak S, Laoteng K (2012) Alternative routes of acetyl-CoA synthesis identified by comparative genomic analysis: involvement in lipid production of oleaginous yeast and fungi. Microbiology 158:217–228

    Article  CAS  PubMed  Google Scholar 

  • Wang HW, Zhang B, Hao YJ, Huang J, Tian AG, Liao Y, Zhang JS, Chen SY (2007) The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. Plant J 52:716–729

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Lu Y, Xin Y, Wei L, Huang S, Xu J (2016) Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. Plant J 88:1071–1081

    Article  CAS  PubMed  Google Scholar 

  • Wilkie AC, Edmundson SJ, Duncan JG (2011) Indigenous algae for local bioresource production: phycoprospecting. Energy Sustain Dev 15:365–371

    Article  Google Scholar 

  • Xue J, Niu YF, Huang T, Yang WD, Liu JS, Li HY (2015) Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab Eng 27:1–9

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Liu J, Jiang Y, Chen F (2016a) Chlorella species as hosts for genetic engineering and expression of heterologous proteins: progress, challenge and perspective. Biotechnol J 11:1244–1261

    Article  CAS  PubMed  Google Scholar 

  • Yang CY, Li R, Cui C, Liu SP, Qiu Q, Ding YG, Wu Y, Zhang B (2016b) Catalytic hydroprocessing of microalgae-derived biofuels: a review. Green Chem 18:3684–3699

    Article  CAS  Google Scholar 

  • Yao Y, Lu Y, Peng KT, Huang T, Niu YF, Xie WH, Yang WD, Liu JS, Li HY (2014) Glycerol and neutral lipid production in the oleaginous marine diatom Phaeodactylum tricornutum promoted by overexpression of glycerol-3-phosphate dehydrogenase. Biotechnol Biofuels 7:110

    Article  CAS  Google Scholar 

  • Yongmanitchai W, Ward OP (1991) Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl Environ Microbiol 57:419–425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Hao Q, Bai L, Xu J, Yin W, Song L, Xu L, Guo X, Fan C, Chen Y, Ruan J, Hao S, Li Y, Wang RR, Hu Z (2014) Overexpression of the soybean transcription factor GmDof4 significantly enhances the lipid content of Chlorella ellipsoidea. Biotechnol Biofuels 7:128

    PubMed  PubMed Central  Google Scholar 

  • Zhu LY, Zhang XC, Ji L, Song XJ, Kuang CH (2007) Changes of lipid content and fatty acid composition of Schizochytrium limacinum in response to different temperatures and salinities. Process Biochem 42:210–214

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Advanced Biomass R&D Center (ABC) of Global Frontier Project funded by the Ministry of Science, ICT and Future Planning (ABC-2010-0029728 and 2011-0031350).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byeong-ryool Jeong or Yong Keun Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Jeon, S., Jeong, Br., Chang, Y. (2017). Chemicals and Fuels from Microalgae. In: Lee, S. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-31421-1_384-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31421-1_384-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31421-1

  • Online ISBN: 978-3-319-31421-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Chemicals and Fuels from Microalgae
    Published:
    12 August 2017

    DOI: https://doi.org/10.1007/978-3-319-31421-1_384-2

  2. Original

    Chemicals and Fuels from Microalgae
    Published:
    04 January 2017

    DOI: https://doi.org/10.1007/978-3-319-31421-1_384-1