Skip to main content

Multiple miRNA Regulation of Lipoprotein Lipase

  • Living reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics
  • 99 Accesses

Abstract

Lipoprotein lipase (LPL) is the key enzyme involved in the intravascular lipolysis of triglyceride (TG)-rich lipoproteins. The regulation of LPL expression and activity is complexed, tightly regulated by hormonal, nutritional, and genetic mechanisms, which remain partially unknown. LPL is highly regulated at a posttranscriptional level that could involve miRNA. miR-27 and miR-29 families are the most studied miRNAs responsible for a decreased LPL expression, mainly in adipose tissue but also in hepatocytes. These miRNAs and several others, miR-467 and miR-590, have been shown to directly target LPL in macrophages and prevent atherosclerosis in animal models. Moreover, a LPL haplotype associated with lower TG was shown to disrupt several miRNA-binding sites. LPL activity can also indirectly be regulated by miRNA which regulates the expression of its cofactors such as APOA5 and ANGPTL3/4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Angptl:

Angiopoietin-like protein

Apo:

Apolipoprotein

FA:

Fatty acids

GPIHBP1:

Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1

HTG:

Hypertriglyceridemia

LPL:

Lipoprotein lipase

miRNA:

MicroRNA

SNP:

Single-nucleotide polymorphism

TG:

Triglycerides

TGRL:

Triglyceride-rich lipoproteins

UTR:

Untranslated region

References

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouvy-Liivrand M, Heinaniemi M, John E et al (2014) Combinatorial regulation of lipoprotein lipase by microRNAs during mouse adipogenesis. RNA Biol 11:76–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Can U, Buyukinan M, Yerlikaya FH (2016) The investigation of circulating microRNAs associated with lipid metabolism in childhood obesity. Pediatr Obes 11:228–234

    Article  CAS  PubMed  Google Scholar 

  • Caussy C, Charrière S, Marçais C et al (2014) An APOA5 3′ UTR variant associated with plasma triglycerides triggers APOA5 downregulation by creating a functional miR-485-5p binding site. Am J Hum Genet 94:129–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caussy C, Charrière S, Meirhaeghe A et al (2016) Multiple microRNA regulation of lipoprotein lipase gene abolished by 3′UTR polymorphisms in a triglyceride-lowering haplotype harboring p.Ser474Ter. Atherosclerosis 246:280–286

    Article  CAS  PubMed  Google Scholar 

  • Charriere S, Bernard S, Aqallal M et al (2008) Association of APOA5 -1131T>C and S19W gene polymorphisms with both mild hypertriglyceridemia and hyperchylomicronemia in type 2 diabetic patients. Clin Chim Acta 394:99–103

    Article  CAS  PubMed  Google Scholar 

  • Charrière S, Cugnet C, Guitard M et al (2009) Modulation of phenotypic expression of APOA5 Q97X and L242P mutations. Atherosclerosis 207:150–156

    Article  PubMed  Google Scholar 

  • Chen T, Li Z, Tu J et al (2011) MicroRNA-29a regulates pro-inflammatory cytokine secretion and scavenger receptor expression by targeting LPL in oxLDL-stimulated dendritic cells. FEBS Lett 585:657–663

    Article  CAS  PubMed  Google Scholar 

  • Chen WJ, Yin K, Zhao GJ et al (2012) The magic and mystery of microRNA-27 in atherosclerosis. Atherosclerosis 222:314–323

    Article  CAS  PubMed  Google Scholar 

  • Corella D, Sorlí JV, Estruch R et al (2014) MicroRNA-410 regulated lipoprotein lipase variant rs13702 is associated with stroke incidence and modulated by diet in the randomized controlled PREDIMED trial. Am J Clin Nutr 100:719–731

    Article  CAS  PubMed  Google Scholar 

  • Dancer M, Caussy C, Di Filippo M et al (2016) Lack of evidence for a liver or intestinal miRNA regulation involved in the hypertriglyceridemic effect of APOC3 3′UTR variant SstI. Atherosclerosis 255:6–10

    Article  CAS  PubMed  Google Scholar 

  • Deng Z, He Y, Yang X et al (2017) MicroRNA-29: a crucial player in fibrotic disease. Mol Diagn Ther 21:285–294

    Article  CAS  PubMed  Google Scholar 

  • Dewey FE, Gusarova V, O’Dushlaine C et al (2016) Inactivating variants in ANGPTL4 and risk of coronary artery disease. N Engl J Med 374:1123–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dijk W, Kersten S (2016) Regulation of lipid metabolism by angiopoietin-like proteins. Curr Opin Lipidol 27:249–256

    Article  CAS  PubMed  Google Scholar 

  • Fabian MR, Sonenberg N (2012) The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19:586–593

    Article  CAS  PubMed  Google Scholar 

  • Gong J, Tong Y, Zhang HM et al (2012) Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNAtarget binding and biogenesis. Hum Mutat 33:254–263

    Article  CAS  PubMed  Google Scholar 

  • Groenendijk M, Cantor RM, de Bruin TW et al (2001) The apoAI-CIII-AIV gene cluster. Atherosclerosis 157:1–11

    Article  CAS  PubMed  Google Scholar 

  • Grosskopf I, Baroukh N, Lee SJ et al (2005) Apolipoprotein A-V deficiency results in marked hypertriglyceridemia attributable to decreased lipolysis of triglyceriderich lipoproteins and removal of their remnants. Arterioscler Thromb Vasc Biol 25:2573–2579

    Article  CAS  PubMed  Google Scholar 

  • He A, Zhu L, Gupta N et al (2007) Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol 21:2785–2794

    Article  CAS  PubMed  Google Scholar 

  • He PP, Ouyang XP, Tang YY et al (2014) MicroRNA-590 attenuates lipid accumulation and pro-inflammatory cytokine secretion by targeting lipoprotein lipase gene in human THP-1 macrophages. Biochimie 106:81–90

    Article  CAS  PubMed  Google Scholar 

  • He PP, OuYang XP, Li Y et al (2015) MicroRNA-590 inhibits lipoprotein lipase expression and prevents atherosclerosis in apoE knockout mice. PLoS One 10:e0138788

    Article  PubMed  PubMed Central  Google Scholar 

  • He Z, Hu C, Jia W (2016) miRNAs in non-alcoholic fatty liver disease. Front Med 10:389–396

    Article  PubMed  Google Scholar 

  • Hegele RA, Ginsberg HN, Chapman MJ et al (2014) The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol 2:655–666

    Article  CAS  PubMed  Google Scholar 

  • Hensley LL, Ranganathan G, Wagner EM et al (2003) Transgenic mice expressing lipoprotein lipase in adipose tissue. Absence of the proximal 3′-untranslated region causes translational upregulation. J Biol Chem 278:32702–32709

    Article  CAS  PubMed  Google Scholar 

  • Herrera BM, Lockstone HE, Taylor JM et al (2010) Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia 53:1099–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffer MJ, Sijbrands EJ, De Man FH et al (1998) Increased risk for endogenous hypertriglyceridaemia is associated with an apolipoprotein C3 haplotype specified by the SstI polymorphism. Eur J Clin Investig 28:807–812

    Article  CAS  Google Scholar 

  • Hu SL, Cui GL, Huang J et al (2016) An APOC3 3′UTR variant associated with plasma triglycerides levels and coronary heart disease by creating a functional miR-4271 binding site. Sci Rep 6:32700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin X, Ye YF, Chen SH et al (2009) MicroRNA expression pattern in different stages of nonalcoholic fatty liver disease. Dig Liver Dis 41:289–297

    Article  CAS  PubMed  Google Scholar 

  • Karbiener M, Fischer C, Nowitsch S et al (2009) microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun 390:247–251

    Article  CAS  PubMed  Google Scholar 

  • Kersten S (2014) Physiological regulation of lipoprotein lipase. Biochim Biophys Acta 1841:919–933

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Kim AY, Lee HW et al (2010) miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem Biophys Res Commun 392:323–328

    Article  CAS  PubMed  Google Scholar 

  • Kriegel AJ, Liu Y, Fang Y et al (2012) The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol Genomics 44:237–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristensen MM, Davidsen PK, Vigelsø A et al (2017) miRNAs in human subcutaneous adipose tissue: effects of weight loss induced by hypocaloric diet and exercise. Obesity (Silver Spring) 25:572–580

    Article  CAS  Google Scholar 

  • Lan G, Xie W, Li L et al (2016) MicroRNA-134 actives lipoprotein lipase-mediated lipid accumulation and inflammatory response by targeting angiopoietin-like 4 in THP-1 macrophages. Biochem Biophys Res Commun 472:410–417

    Article  CAS  PubMed  Google Scholar 

  • Li Y, He PP, Zhang DW et al (2014) Lipoprotein lipase: from gene to atherosclerosis. Atherosclerosis 237:597–608

    Article  CAS  PubMed  Google Scholar 

  • Marçais C, Bernard S, Merlin M et al (2000) Severe hypertriglyceridaemia in type II diabetes: involvement of apoC-III Sst-I polymorphism, LPL mutations and apo E3 deficiency. Diabetologia 43:1346–1352

    Article  PubMed  Google Scholar 

  • Marçais C, Verges B, Charrière S et al (2005) Apoa5 Q139X truncation predisposes to late-onset hyperchylomicronemia due to lipoprotein lipase impairment. J Clin Invest 115:2862–2869

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattis AN, Song G, Hitchner K et al (2015) A screen in mice uncovers repression of lipoprotein lipase by microRNA-29a as a mechanism for lipid distribution away from the liver. Hepatology 61:141–152

    Article  CAS  PubMed  Google Scholar 

  • Merkel M, Loeffler B, Kluger M et al (2005) Apolipoprotein AV accelerates plasma hydrolysis of triglyceride-rich lipoproteins by interaction with proteoglycan-bound lipoprotein lipase. J Biol Chem 280:21553–21560

    Article  CAS  PubMed  Google Scholar 

  • Musunuru K, Pirruccello JP, Do R et al (2010) Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med 363:2220–2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardina E, Baena-Fustegueras JA, Llamas R et al (2009) Lipoprotein lipase expression in livers of morbidly obese patients could be responsible for liver steatosis. Obes Surg 19:608–616

    Article  PubMed  Google Scholar 

  • Pennacchio LA, Olivier M, Hubacek JA et al (2001) An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 294:169–173

    Article  CAS  PubMed  Google Scholar 

  • Pennacchio LA, Olivier M, Hubacek JA et al (2002) Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels. Hum Mol Genet 11:3031–3038

    Article  CAS  PubMed  Google Scholar 

  • Ranganathan G, Li C, Kern PA (2000) The translational regulation of lipoprotein lipase in diabetic rats involves the 3′-untranslated region of the lipoprotein lipase mRNA. J Biol Chem 275:40986–40991

    Article  CAS  PubMed  Google Scholar 

  • Richardson K, Louie-Gao Q, Arnett DK et al (2011) The PLIN4 variant rs8887 modulates obesity related phenotypes in humans through creation of a novel miR-522 seed site. PLoS One 6:e17944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson K, Nettleton JA, Rotllan N et al (2013) Gain-of-function lipoprotein lipase variant rs13702 modulates lipid traits through disruption of a microRNA-410 seed site. Am J Hum Genet 92:5–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roderburg C, Urban GW, Bettermann K et al (2011) Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 53:209–218

    Article  CAS  PubMed  Google Scholar 

  • Tian GP, Chen WJ, He PP et al (2012) MicroRNA-467b targets LPL gene in RAW 264.7 macrophages and attenuates lipid accumulation and proinflammatory cytokine secretion. Biochimie 94:2749–2755

    Article  CAS  PubMed  Google Scholar 

  • Tian GP, Tang YY, He PP et al (2014) The effects of miR-467b on lipoprotein lipase (LPL) expression, pro-inflammatory cytokine, lipid levels and atherosclerotic lesions in apolipoprotein E knockout mice. Biochem Biophys Res Commun 443:428–434

    Article  CAS  PubMed  Google Scholar 

  • Vickers KC, Shoucri BM, Levin MG et al (2013) MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology 57:533–542

    Article  CAS  PubMed  Google Scholar 

  • Willer CJ, Sanna S, Jackson AU et al (2008) Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 40:161–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie W, Li L, Zhang M et al (2016) MicroRNA-27 prevents atherosclerosis by suppressing lipoprotein lipase-induced lipid accumulation and inflammatory response in apolipoprotein E knockout mice. PLoS One 11:e0157085

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Wu JF, Chen WJ et al (2014) MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. Atherosclerosis 234:54–64

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sybil Charriere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Charriere, S., Moulin, P. (2017). Multiple miRNA Regulation of Lipoprotein Lipase. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_98-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31143-2_98-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31143-2

  • Online ISBN: 978-3-319-31143-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics