Skip to main content

Molecular Biology of Human Obesity: Non-epigenetics in Comparison with Epigenetic Processes

  • Living reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

The rapid increase in the prevalence of obesity worldwide is undoubtedly linked to a “social globalization”; however, a genetic component also accounts for individual differences in the predisposition to weight gain. The contribution of candidate gene studies identified several mutations related to obesity in the leptin/melanocortin pathway , which is involved in the regulation of food intake and energy expenditure. Other studies including genome-wide association study (GWAS) found genetic variants across the genome associated with the susceptibility risk to develop obesity. However, until now, all these genetic variations explain only a small fraction of the estimated heritability of obesity. Furthermore, our genome is not likely to change profoundly through mutations in few generations as to explain the rapid increase in the prevalence of obesity. More recently, epigenetic regulation of gene expression emerged as a potential factor that might explain differences in obesity risk. Several genes have been found whose expression is controlled by epigenetic factors. Diet and nutrition appear to be the most important factors influencing epigenetic mechanisms leading to an obese phenotype. Effectively, our diet suffered drastic changes in the last decades with the incorporation of new nutrients and bioactive molecules. Several studies performed both in humans and animal models found differences at different epigenetic mechanisms between obese and non-obese individuals. However, our knowledge on which and how nutrients affect epigenetic mechanisms remains limited. Currently, it is thought that the obesity condition might be a consequence of an interplay between genetic, epigenetic, and lifestyle factors. In the near future, studies based on alterations on gene expression due to environmental signals will help to draw a more complete picture of the obesity etiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

α-MSH:

Alpha-melanocyte-stimulating hormone

AHRR:

Aryl-hydrocarbon receptor repressor

Avy :

Yellow agouti allele

BDNF:

Brain-derived neurotrophic factor

BMI:

Body mass index

cAMP:

Cyclic adenosine monophosphate

CH3 :

Methyl group

CNS:

Central nervous system

CNVs:

Copy number variations

CpG:

5′—C—phosphate—G—3′

DNA:

Deoxyribonucleic acid

Dnmt:

DNA methyltransferases

DOHaD:

Developmental origins of health and disease

GWAS:

Genome-wide association study

HIF3A:

Hypoxia-inducible factor 3 alpha subunit

LEP:

Leptin

LEPR:

Leptin receptor

MC4R:

Melanocortin 4 receptor

NNMT:

Nicotinamide N-methyltransferase

NPY:

Neuropeptide Y

NTRK2:

Neurotrophic receptor tyrosine kinase 2

PCSK1:

Proprotein convertase subtilisin/kexin type 1

POMC:

Pro-opiomelanocortin

PWS:

Prader-Willi syndrome

RNA:

Ribonucleic acid

SIM1:

Single-minded homolog 1

TrkB:

Tropomyosin receptor kinase B

References

  • Albuquerque D, Estévez MN, Víbora PB et al (2014) Novel variants in the MC4R and LEPR genes among severely obese children from the Iberian population. Ann Hum Genet 78:195–207

    Article  CAS  PubMed  Google Scholar 

  • Albuquerque D, Manco L, Nóbrega C (2015a) Epigenetics of human obesity: a link between genetics and nutrition. In: Nóbrega C, Rodríguez-López R (eds) Molecular mechanisms underpinning the development of obesity. Springer, Basel, pp 101–127

    Google Scholar 

  • Albuquerque D, Stice E, Rodríguez-López R et al (2015b) Current review of genetics of human obesity: from molecular mechanisms to an evolutionary perspective. Mol Gen Genomics 290:1191–1221

    Article  CAS  Google Scholar 

  • Arner P, Kulyté A (2015) MicroRNA regulatory networks in human adipose tissue and obesity. Nat Rev Endocrinol 11:276–288

    Article  CAS  PubMed  Google Scholar 

  • Aslibekyan S, Demerath EW, Mendelson M et al (2015) Epigenome-wide study identifies novel methylation loci associated with body mass index and waist circumference. Obesity 23:1493–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burris HH, Baccarelli AA, Byun H-M et al (2015) Offspring DNA methylation of the aryl-hydrocarbon receptor repressor gene is associated with maternal BMI, gestational age, and birth weight. Epigenetics 10:913

    Article  PubMed  PubMed Central  Google Scholar 

  • Chavatte-Palmer P, Tarrade A, Rousseau-Ralliard D (2016) Diet before and during pregnancy and offspring health: the importance of animal models and what can be learned from them. Int J Environ Res Public Health 13:E586

    Article  PubMed  Google Scholar 

  • Choi S-W, Friso S (2010) Epigenetics: a new bridge between nutrition and health. Adv Nutr An Int Rev J 1:8–16

    Article  CAS  Google Scholar 

  • Clément K, Ferré P (2003) Genetics and the pathophysiology of obesity. Pediatr Res 53:721–725

    Article  PubMed  Google Scholar 

  • Coll AP, Raffin-Sanson ML, de Keyzer Y et al (2007) Effects of pro-opiomelanocortin (POMC) on food intake and body weight: mechanisms and therapeutic potential? Clin Sci (Lond) 113:171–182

    Article  CAS  Google Scholar 

  • Crujeiras AB, Campion J, Díaz-Lagares A et al (2013) Association of weight regain with specific methylation levels in the NPY and POMC promoters in leukocytes of obese men: a translational study. Regul Pept 186:1–6

    Article  CAS  PubMed  Google Scholar 

  • Crujeiras AB, Diaz-Lagares A, Moreno-Navarrete JM et al (2016) Genome-wide DNA methylation pattern in visceral adipose tissue differentiates insulin-resistant from insulin-sensitive obese subjects. Transl Res 178:13–24

    Article  CAS  PubMed  Google Scholar 

  • Demerath EW, Guan W, Grove ML et al (2015) Epigenome-wide association study (EWAS) of BMI, BMI change and waist circumference in African American adults identifies multiple replicated loci. Hum Mol Genet 24:4464–4479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dick KJ, Nelson CP, Tsaprouni L et al (2014) DNA methylation and body-mass index: a genome-wide analysis. Lancet 383:1990–1998

    Article  CAS  PubMed  Google Scholar 

  • Dolinoy DC (2008) The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev 66(Suppl 1):S7–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong S-S, Guo Y, Zhu D-L et al (2016) Epigenomic elements analyses for promoters identify ESRRG as a new susceptibility gene for obesity-related traits. Int J Obes 40:1170–1176

    Article  CAS  Google Scholar 

  • Drake AJ, Reynolds RM (2010) Impact of maternal obesity on offspring obesity and cardiometabolic disease risk. Reproduction 140:387–398

    Article  CAS  PubMed  Google Scholar 

  • Feinleib M, Garrison RJ, Fabsitz R et al (1977) The NHLBI twin study of cardiovascular disease risk factors: methodology and summary of results. Am J Epidemiol 106:284–285

    Article  CAS  PubMed  Google Scholar 

  • Gamero-Villarroel C, Gordillo I, Carrillo JA et al (2014) BDNF genetic variability modulates psychopathological symptoms in patients with eating disorders. Eur Child Adolesc Psychiatry 23:669–679

    Article  PubMed  Google Scholar 

  • Gillberg L, Perfilyev A, Brøns C et al (2016) Adipose tissue transcriptomics and epigenomics in low birthweight men and controls: role of high-fat overfeeding. Diabetologia 59:799–812

    Article  CAS  PubMed  Google Scholar 

  • Goryakin Y, Lobstein T, James WPT et al (2015) The impact of economic, political and social globalization on overweight and obesity in the 56 low and middle income countries. Soc Sci Med 133:67–76

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray J, Yeo G, Hung C et al (2007) Functional characterization of human NTRK2 mutations identified in patients with severe early-onset obesity. Int J Obes 31:359–364

    Article  CAS  Google Scholar 

  • Haggarty P (2013) Epigenetic consequences of a changing human diet. Proc Nutr Soc 72:1–9

    Article  Google Scholar 

  • Hernández-Aguilera A, Fernández-Arroyo S, Cuyàs E et al (2016) Epigenetics and nutrition-related epidemics of metabolic diseases: current perspectives and challenges. Food Chem Toxicol 96:191–204

    Article  PubMed  Google Scholar 

  • Hinney A, Volckmar A-L, Knoll N (2013) Melanocortin-4 receptor in energy homeostasis and obesity pathogenesis. Prog Mol Biol Transl Sci 114:147–191

    Article  CAS  PubMed  Google Scholar 

  • Jufvas Å, Strålfors P, Vener AV (2011) Histone variants and their post-translational modifications in primary human fat cells. PLoS One 6:e15960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller M, Kralisch S, Rohde K et al (2014) Global DNA methylation levels in human adipose tissue are related to fat distribution and glucose homeostasis. Diabetologia 57:2374–2383

    Article  CAS  PubMed  Google Scholar 

  • Kornfeld J-W, Baitzel C, Könner AC et al (2013) Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 494:111–115

    Article  CAS  PubMed  Google Scholar 

  • Krude H, Biebermann H, Luck W et al (1998) Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 19:155–157

    Article  CAS  PubMed  Google Scholar 

  • Kühnen P, Handke D, Waterland RA et al (2016) Interindividual variation in DNA methylation at a putative POMC metastable epiallele is associated with obesity. Cell Metab 24:502–509

    Article  PubMed  Google Scholar 

  • Lee YS (2009) The role of leptin-melanocortin system and human weight regulation: lessons from experiments of nature. Ann Acad Med Singap 38:34–44

    PubMed  Google Scholar 

  • Li J, Zhou C, Li J et al (2015) Global correlation analysis for microRNA and gene expression profiles in human obesity. Pathol Res Pract 211:361–368

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Li L, Chu J et al (2016) Os 33-03 serum n1-methylnicotinamide is associated with obesity and diabetes in Chinese. J Hypertens 34:e393–e394

    Article  PubMed  Google Scholar 

  • Lo KA, Bauchmann MK, Baumann AP et al (2011) Genome-wide profiling of H3K56 acetylation and transcription factor binding sites in human adipocytes. PLoS One 6:e19778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKay JA, Mathers JC (2016) Maternal folate deficiency and metabolic dysfunction in offspring. Proc Nutr Soc 75:90–95

    Article  CAS  PubMed  Google Scholar 

  • Meerson A, Traurig M, Ossowski V et al (2013) Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-α. Diabetologia 56:1971–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehanna E, Ghattas MH, Mesbah NM et al (2015) Association of MicroRNA-146a rs2910164 gene polymorphism with metabolic syndrome. Folia Biol 61:43–48

    CAS  Google Scholar 

  • Mendiratta MS, Yang Y, Balazs AE et al (2011) Early onset obesity and adrenal insufficiency associated with a homozygous POMC mutation. Int J Pediatr Endocrinol 2011(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  • Montague CT, Farooqi IS, Whitehead JP et al (1997) Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387:903–908

    Article  CAS  PubMed  Google Scholar 

  • Navarro E, Funtikova AN, Fíto M et al (2016) Prenatal nutrition and the risk of adult obesity: long-term effects of nutrition on epigenetic mechanisms regulating gene expression. J Nutr Biochem 39:1–14

    Article  PubMed  Google Scholar 

  • Ng M, Fleming T, Robinson M et al (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384:766–781

    Article  PubMed  PubMed Central  Google Scholar 

  • Oswal A, Yeo GSH (2007) The leptin melanocortin pathway and the control of body weight: lessons from human and murine genetics. Obes Rev 8:293–306

    Article  CAS  PubMed  Google Scholar 

  • Pan H, Lin X, Wu Y et al (2015) HIF3A association with adiposity: the story begins before birth. Epigenomics 7:937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perera F, Herbstman J (2011) Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol 31:363–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard LE, Turnbull AV, White A (2002) Pro-opiomelanocortin processing in the hypothalamus: impact on melanocortin signalling and obesity. J Endocrinol 172:411–421

    Article  CAS  PubMed  Google Scholar 

  • Rau H, Reaves BJ, O’Rahilly S et al (1999) Truncated human leptin (delta133) associated with extreme obesity undergoes proteasomal degradation after defective intracellular transport. Endocrinology 140:1718–1723

    Article  CAS  PubMed  Google Scholar 

  • Rönn T, Volkov P, Davegårdh C et al (2013) A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet 9:e1003572

    Article  PubMed  PubMed Central  Google Scholar 

  • Russo VEA, Martienssen RA, Riggs AD (1996) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Monograph Archive 32:i–xii

    Google Scholar 

  • Silventoinen K, Rokholm B, Kaprio J et al (2010) The genetic and environmental influences on childhood obesity: a systematic review of twin and adoption studies. Int J Obes 34:29–40

    Article  CAS  Google Scholar 

  • Singh G, Danaei G, Farzadfar F et al (2016) Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387:1377–1396

    Article  Google Scholar 

  • Soubry A, Schildkraut JM, Murtha A et al (2013) Paternal obesity is associated with IGF2 hypomethylation in newborns: results from a Newborn Epigenetics Study (NEST) cohort. BMC Med 11:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soubry A, Murphy SK, Wang F et al (2015) Newborns of obese parents have altered DNA methylation patterns at imprinted genes. Int J Obes 39:650–657

    Article  CAS  Google Scholar 

  • Stunkard AJ, Foch TT, Hrubec Z (1986a) A twin study of human obesity. JAMA 256:51–54

    Article  CAS  PubMed  Google Scholar 

  • Stunkard AJ, Sørensen TI, Hanis C et al (1986b) An adoption study of human obesity. N Engl J Med 314:193–198

    Article  CAS  PubMed  Google Scholar 

  • Tateishi K, Okada Y, Kallin EM et al (2009) Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 458:757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Dijk SJ, Molloy PL, Varinli H et al (2015) Epigenetics and human obesity. Int J Obes 39:85–97

    Article  Google Scholar 

  • van den Dungen MW, Murk AJ, Kok DE et al (2016) Comprehensive DNA methylation and gene expression profiling in differentiating human adipocytes. J Cell Biochem 117:2707–2718

    Article  PubMed  Google Scholar 

  • Vickers MH (2014) Early life nutrition, epigenetics and programming of later life disease. Forum Nutr 6:2165–2178

    CAS  Google Scholar 

  • Voisin S, Almén MS, Zheleznyakova GY et al (2015) Many obesity-associated SNPs strongly associate with DNA methylation changes at proximal promoters and enhancers. Genome Med 7:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Volkov P, Olsson AH, Gillberg L et al (2016) A genome-wide mQTL analysis in human adipose tissue identifies genetic variants associated with DNA methylation, gene expression and metabolic traits. PLoS One 11:e0157776

    Article  PubMed  PubMed Central  Google Scholar 

  • Waddington CH (2014) The strategy of the genes: a discussion of some aspects of theoretical biology, Routledge library edition: 20th century science. Routledge, Abingdon

    Google Scholar 

  • Wang S, Song J, Yang Y et al (2015) HIF3A DNA methylation is associated with childhood obesity and ALT. PLoS One 10:e0145944

    Article  PubMed  PubMed Central  Google Scholar 

  • Wheatley KE, Nogueira LM, Perkins SN, Hursting SD (2011) Differential effects of calorie restriction and exercise on the adipose transcriptome in diet-induced obese mice. J Obes 2011:265417

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitaker RC (2004) Predicting preschooler obesity at birth: the role of maternal obesity in early pregnancy. Pediatrics 114(1):e29–e36

    Article  PubMed  Google Scholar 

  • Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH (1997) Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med 337(13):869–873

    Article  CAS  PubMed  Google Scholar 

  • Williams L, Seki Y, Delahaye F, Cheng A, Fuloria M, Hughes Einstein F, Charron MJ (2016) DNA hypermethylation of CD3(+) T cells from cord blood of infants exposed to intrauterinegrowth restriction. Diabetologia 59(8):1714–1723

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Xie X (2016) Neurotrophic factor control of satiety and body weight. Nat Rev Neurosci 17(5):282–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Liu L, Zhu Y, Huang G, Wang PP (2014) The association between breastfeeding and childhood obesity: a meta-analysis. BMC Public Health 14:1267

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Loos RJ, Powell JE et al (2012) FTO genotype is associated with phenotypic variability of body mass index. Nature 490(7419):267–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youngson NA, Morris MJ (2013) What obesity research tell us about epigenetic mechanisms. Philos Trans R Soc Lond B Biol Sci 368(1609):20110337

    Article  PubMed  PubMed Central  Google Scholar 

  • Zegers D, Beckers S, Hendrickx R, Van Camp JK, de Craemer V, Verrijken A et al (2014) Mutation screen of the SIM1 gene in pediatric patients with early-onset obesity. Int J Obes 38:1000–1004

    Article  CAS  Google Scholar 

  • Zhang Q, Ramlee MK, Brunmeir R et al (2012) Dynamic and distinct histone modifications modulate the expression of key adipogenesis regulatory genes. Cell Cycle 11:4310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou JY, Li L (2014) MicroRNAs are key regulators of brown adipogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 1841:1590–1595

    Article  CAS  Google Scholar 

  • Zhu J-G, Xia L, Ji C-B et al (2012) Differential DNA methylation status between human preadipocytes and mature adipocytes. Cell Biochem Biophys 63:1–15

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Albuquerque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Albuquerque, D., Manco, L., Nóbrega, C. (2017). Molecular Biology of Human Obesity: Non-epigenetics in Comparison with Epigenetic Processes. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31143-2_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31143-2

  • Online ISBN: 978-3-319-31143-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics