Skip to main content

Perinatal Malnutrition and Epigenetic Regulation of Long-Term Metabolism

  • Living reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

Maternal malnutrition in perinatal life can have long-lasting adverse effects on glucose and lipid homeostasis in the offspring, culminating in dyslipidemia, insulin resistance, and obesity. Understanding the molecular mechanisms underlying how these nutritional deficits during perinatal life lead to permanent changes in hepatic and adipose function will provide efficacious therapeutic strategies to mitigate these metabolic defects short and long term. This chapter addresses how epigenetic mechanisms mediate alterations in hepatic and adipose gene expression identified from clinical studies and different experimental models of maternal malnutrition. These include DNA methylation, posttranslational histone modifications, and microRNAs.

Supported by

Canadian Institutes for Health Research Operating Grant and Natural Sciences and Engineering Research Council of Canada Operating Grant

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

11β-HSD1:

11β-hydroxysteroid dehydrogenase type 1

ABCA1:

ATP-binding cassette transporter 1

ABCG5/8:

ATP-binding cassette transporter 5/8

ACCα:

Acetyl-CoA carboxylase-α

ADP:

Adenine diphosphate

APOE:

Apolipoprotein E

CpG:

Cysteine-phosphate-guanine

CVD:

Cardiovascular disease

Cyp7a1:

Cytochrome P450 7a1

DOHaD:

Developmental origins of health and disease

ER stress:

Endoplasmic reticulum stress

FBPase:

Fructose bisphosphatase

G6Pase:

Glucose-6 phosphatase

GDF3:

Growth differentiation factor-3

HDL:

High-density lipoprotein

HMG-COA:

3-hydroxy-3-methylglutaryl-coenzyme A

HNF4α:

Hepatocyte nuclear factor 4α

IGF-1:

Insulin growth factor 1

IGF-2R:

Insulin growth factor 2 receptor

IUGR:

Intrauterine growth restriction

JMJD:

Jmj-domain-containing histone demethylation protein

LDL:

Low-density lipoproteins

LP:

Low protein

LXR:

Liver X receptor

LXRE:

Liver X receptor element

miRs:

MicroRNAs

MPR:

Maternal protein restriction

PCK1:

Phosphoenolpyruvate carboxykinase 1 (soluble)

PEPCK:

Phosphoenolpyruvate carboxykinase

PND:

Postnatal day

SCD-1:

Stearoyl-CoA desaturase

SMAD4:

SMAD family member 4

WAT:

White adipose tissue

References

  • Abate N (2012) Adipocyte maturation arrest: a determinant of systemic insulin resistance to glucose disposal. J Clin Endocrinol Metab 97:760–763. doi:10.1210/jc.2012-1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aly FZ, Kleiner DE (2011) Update on fatty liver disease and steatohepatitis. Adv Anat Pathol 18:294–300. doi:10.1097/PAP.0b013e318220f59b

    Article  PubMed  PubMed Central  Google Scholar 

  • Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM (2007) Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA J Am Med Assoc 298:309–316. doi:10.1001/jama.298.3.309

    Article  CAS  Google Scholar 

  • Barth TK, Imhof A (2010) Fast signals and slow marks: the dynamics of histone modifications. Trends Biochem Sci 35:618–626. doi:10.1016/j.tibs.2010.05.006

    Article  CAS  PubMed  Google Scholar 

  • Borengasser SJ, Zhong Y, Kang P, Lindsey F, Ronis MJJ, Badger TM, Gomez-Acevedo H, Shankar K (2013) Maternal obesity enhances white adipose tissue differentiation and alters genome-scale DNA methylation in male rat offspring. Endocrinology 154:4113–4125. doi:10.1210/en.2012-2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosello O, Zamboni M (2000) Visceral obesity and metabolic syndrome. Obes Rev Off J Int Assoc Study Obes 1:47–56

    Article  CAS  Google Scholar 

  • Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85. doi:10.1371/journal.pbio.0030085

    Article  PubMed  PubMed Central  Google Scholar 

  • Broholm C, Olsson AH, Perfilyev A, Hansen NS, Schrölkamp M, Strasko KS, Scheele C, Ribel-Madsen R, Mortensen B, Jørgensen SW, Ling C, Vaag A (2016) Epigenetic programming of adipose-derived stem cells in low birthweight individuals. Diabetologia 59:2664–2673. doi:10.1007/s00125-016-4099-9

    Article  PubMed  Google Scholar 

  • Cali AMG, Caprio S (2009) Ectopic fat deposition and the metabolic syndrome in obese children and adolescents. Horm Res 71(Suppl 1):2–7. doi:10.1159/000178028

    CAS  PubMed  Google Scholar 

  • Casas-Agustench P, Fernandes FS, Tavares do Carmo MG, Visioli F, Herrera E, Dávalos A (2015) Consumption of distinct dietary lipids during early pregnancy differentially modulates the expression of microRNAs in mothers and offspring. PLoS One 10:e0117858. doi:10.1371/journal.pone.0117858

    Article  PubMed  PubMed Central  Google Scholar 

  • Cascio S, Zaret KS (1991) Hepatocyte differentiation initiates during endodermal-mesenchymal interactions prior to liver formation. Dev Camb Engl 113:217–225

    CAS  Google Scholar 

  • Cho CE, Pannia E, Huot PSP, Sánchez-Hernández D, Kubant R, Dodington DW, Ward WE, Bazinet RP, Anderson GH (2015) Methyl vitamins contribute to obesogenic effects of a high multivitamin gestational diet and epigenetic alterations in hypothalamic feeding pathways in Wistar rat offspring. Mol Nutr Food Res 59:476–489. doi:10.1002/mnfr.201400663

    Article  CAS  PubMed  Google Scholar 

  • Crosby WM (1991) Studies in fetal malnutrition. Am J Dis Child 1960(145):871–876

    Google Scholar 

  • Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115:1343–1351. doi:10.1172/JCI23621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Einstein F, Thompson RF, Bhagat TD, Fazzari MJ, Verma A, Barzilai N, Greally JM (2010) Cytosine methylation dysregulation in neonates following intrauterine growth restriction. PLoS One 5:e8887. doi:10.1371/journal.pone.0008887

    Article  PubMed  PubMed Central  Google Scholar 

  • Elias AA, Maki Y, Matushewski B, Nygard K, Regnault TRH, Richardson BS (2017) Maternal nutrient restriction in guinea pigs leads to fetal growth restriction with evidence for chronic hypoxia. Pediatr Res. doi:10.1038/pr.2017.92

  • Ferland-McCollough D, Fernandez-Twinn DS, Cannell IG, David H, Warner M, Vaag AA, Bork-Jensen J, Brøns C, Gant TW, Willis AE, Siddle K, Bushell M, Ozanne SE (2012) Programming of adipose tissue miR-483-3p and GDF-3 expression by maternal diet in type 2 diabetes. Cell Death Differ 19:1003–1012. doi:10.1038/cdd.2011.183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Q, McKnight RA, Callaway CW, Yu X, Lane RH, Majnik AV (2015) Intrauterine growth restriction disrupts developmental epigenetics around distal growth hormone response elements on the rat hepatic IGF-1 gene. FASEB J Off Publ Fed Am Soc Exp Biol 29:1176–1184. doi:10.1096/fj.14-258442

    CAS  Google Scholar 

  • Gomez-Valades AG, Mendez-Lucas A, Vidal-Alabro A, Blasco FX, Chillon M, Bartrons R, Bermudez J, Perales JC (2008) Pck1 gene silencing in the liver improves glycemia control, insulin sensitivity, and dyslipidemia in db/db mice. Diabetes 57:2199–2210. doi:10.2337/db07-1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodspeed D, Seferovic MD, Holland W, Mcknight RA, Summers SA, Branch DW, Lane RH, Aagaard KM (2015) Essential nutrient supplementation prevents heritable metabolic disease in multigenerational intrauterine growth-restricted rats. FASEB J Off Publ Fed Am Soc Exp Biol 29:807–819. doi:10.1096/fj.14-259614

    CAS  Google Scholar 

  • Greengard O, Federman M, Knox WE (1972) Cytomorphometry of developing rat liver and its application to enzymic differentiation. J Cell Biol 52:261–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwood MR, Hirsch J (1974) Postnatal development of adipocyte cellularity in the normal rat. J Lipid Res 15:474–483

    CAS  PubMed  Google Scholar 

  • Gualdi R, Bossard P, Zheng M, Hamada Y, Coleman JR, Zaret KS (1996) Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev 10:1670–1682

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, He Y, Sun X, He Y, Li Y, Sun C (2014) Maternal high folic acid supplement promotes glucose intolerance and insulin resistance in male mouse offspring fed a high-fat diet. Int J Mol Sci 15:6298–6313. doi:10.3390/ijms15046298

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishimoto T, Lanaspa MA, Rivard CJ, Roncal-Jimenez CA, Orlicky DJ, Cicerchi C, McMahan RH, Abdelmalek MF, Rosen HR, Jackman MR, MacLean PS, Diggle CP, Asipu A, Inaba S, Kosugi T, Sato W, Maruyama S, Sánchez-Lozada LG, Sautin YY, Hill JO, Bonthron DT, Johnson RJ (2013) High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. Hepatol Baltim Md 58:1632–1643. doi:10.1002/hep.26594

    Article  CAS  Google Scholar 

  • Jensen-Urstad AP, Semenkovich CF (2012) Fatty acid synthase and liver triglyceride metabolism: housekeeper or messenger? Biochim Biophys Acta 1821:747–753. doi:10.1016/j.bbalip.2011.09.017

    Article  CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080. doi:10.1126/science.1063127

    Article  CAS  PubMed  Google Scholar 

  • Katsurada A, Iritani N, Fukuda H, Matsumura Y, Nishimoto N, Noguchi T, Tanaka T (1990a) Effects of nutrients and hormones on transcriptional and post-transcriptional regulation of fatty acid synthase in rat liver. Eur J Biochem FEBS 190:427–433

    Article  CAS  Google Scholar 

  • Katsurada A, Iritani N, Fukuda H, Matsumura Y, Nishimoto N, Noguchi T, Tanaka T (1990b) Effects of nutrients and hormones on transcriptional and post-transcriptional regulation of acetyl-CoA carboxylase in rat liver. Eur J Biochem FEBS 190:435–441

    Article  CAS  Google Scholar 

  • Khorram O, Han G, Bagherpour R, Magee TR, Desai M, Ross MG, Chaudhri AA, Toloubeydokhti T, Pearce WJ (2010) Effect of maternal undernutrition on vascular expression of micro and messenger RNA in newborn and aging offspring. Am J Physiol Integr Comp Physiol 298:R1366–R1374. doi:10.1152/ajpregu.00704.2009

    Article  CAS  Google Scholar 

  • Kim YI, Pogribny IP, Basnakian AG, Miller JW, Selhub J, James SJ, Mason JB (1997) Folate deficiency in rats induces DNA strand breaks and hypomethylation within the p53 tumor suppressor gene. Am J Clin Nutr 65:46–52

    CAS  PubMed  Google Scholar 

  • Kohli R, Kirby M, Xanthakos SA, Softic S, Feldstein AE, Saxena V, Tang PH, Miles L, Miles MV, Balistreri WF, Woods SC, Seeley RJ (2010) High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatol Baltim Md 52:934–944. doi:10.1002/hep.23797

    Article  CAS  Google Scholar 

  • Kung JWC, Currie IS, Forbes SJ, Ross JA (2010) Liver development, regeneration, and carcinogenesis. J Biomed Biotechnol 2010:984248. doi:10.1155/2010/984248

    Article  PubMed  PubMed Central  Google Scholar 

  • Lan X, Cretney EC, Kropp J, Khateeb K, Berg MA, Peñagaricano F, Magness R, Radunz AE, Khatib H (2013) Maternal diet during pregnancy induces gene expression and DNA methylation changes in fetal tissues in sheep. Front Genet 4:49. doi:10.3389/fgene.2013.00049

    Article  PubMed  PubMed Central  Google Scholar 

  • Law MR, Wald NJ, Rudnicka AR (2003) Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. BMJ 326:1423. doi:10.1136/bmj.326.7404.1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461:747–753. doi:10.1038/nature08494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marmorstein R, Trievel RC (2009) Histone modifying enzymes: structures, mechanisms, and specificities. Biochim Biophys Acta 1789:58–68. doi:10.1016/j.bbagrm.2008.07.009

    Article  CAS  PubMed  Google Scholar 

  • Mathieu P, Pibarot P, Despres JP (2006) Metabolic syndrome: the danger signal in atherosclerosis. Vasc Health Risk Manag 2:285–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-Indias I, Tinahones FJ (2015) Impaired adipose tissue expandability and lipogenic capacities as ones of the main causes of metabolic disorders. J Diabetes Res 2015:970375. doi:10.1155/2015/970375

    Article  PubMed  PubMed Central  Google Scholar 

  • Nijland MJ, Mitsuya K, Li C, Ford S, McDonald TJ, Nathanielsz PW, Cox LA (2010) Epigenetic modification of fetal baboon hepatic phosphoenolpyruvate carboxykinase following exposure to moderately reduced nutrient availability. J Physiol 588:1349–1359. doi:10.1113/jphysiol.2009.184168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolan K, Walter F, Tuffy LP, Poeschel S, Gallagher R, Haunsberger S, Bray I, Stallings RL, Concannon CG, Prehn JH (2016) Endoplasmic reticulum stress-mediated upregulation of miR-29a enhances sensitivity to neuronal apoptosis. Eur J Neurosci 43(5):640–52. doi:10.1111/ejn.13160

  • Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A (2007) Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA J Am Med Assoc 298:299–308. doi:10.1001/jama.298.3.299

    Article  CAS  Google Scholar 

  • Ntambi JM (1992) Dietary regulation of stearoyl-CoA desaturase 1 gene expression in mouse liver. J Biol Chem 267:10925–10930

    CAS  PubMed  Google Scholar 

  • Osumek JE, Revesz A, Morton JS, Davidge ST, Hardy DB (2014) Enhanced trimethylation of histone h3 mediates impaired expression of hepatic glucose 6-phosphatase expression in offspring from rat dams exposed to hypoxia during pregnancy. Reprod Sci Thousand Oaks Calif 21:112–121. doi:10.1177/1933719113492212

    Article  CAS  Google Scholar 

  • Perseghin G (2011) Lipids in the wrong place: visceral fat and nonalcoholic steatohepatitis. Diabetes Care 34(Suppl 2):S367–S370. doi:10.2337/dc11-s249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterside IE, Selak MA, Simmons RA (2003) Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats. Am J Physiol Endocrinol Metab 285:E1258–E1266. doi:10.1152/ajpendo.00437.2002

    Article  CAS  PubMed  Google Scholar 

  • Poissonnet CM, Burdi AR, Garn SM (1984) The chronology of adipose tissue appearance and distribution in the human fetus. Early Hum Dev 10:1–11

    Article  CAS  PubMed  Google Scholar 

  • Postic C, Dentin R, Girard J (2004) Role of the liver in the control of carbohydrate and lipid homeostasis. Diabete Metab 30:398–408

    Article  CAS  PubMed  Google Scholar 

  • Repa JJ, Mangelsdorf DJ (1999) Nuclear receptor regulation of cholesterol and bile acid metabolism. Curr Opin Biotechnol 10:557–563

    Article  CAS  PubMed  Google Scholar 

  • Riediger ND, Clara I (2011) Prevalence of metabolic syndrome in the Canadian adult population. CMAJ Can Med Assoc J J Assoc Med Can 183:E1127–E1134. doi:10.1503/cmaj.110070

    Article  Google Scholar 

  • Samuel VT, Petersen KF, Shulman GI (2010) Lipid-induced insulin resistance: unravelling the mechanism. Lancet Lond Engl 375:2267–2277. doi:10.1016/S0140-6736(10)60408-4

    Article  CAS  Google Scholar 

  • Sardinha FLC, Fernandes FS, Tavares do Carmo MG, Herrera E (2013) Sex-dependent nutritional programming: fish oil intake during early pregnancy in rats reduces age-dependent insulin resistance in male, but not female, offspring. Am J Phys Regul Integr Comp Phys 304:R313–R320. doi:10.1152/ajpregu.00392.2012

    CAS  Google Scholar 

  • Sarr O, Blake A, Thompson JA, Zhao L, Rabicki K, Walsh JC, Welch I, Regnault TRH (2016) The differential effects of low birth weight and western diet consumption upon early life hepatic fibrosis development in guinea pig. J Physiol 594:1753–1772. doi:10.1113/JP271777

  • Sohi G, Marchand K, Revesz A, Arany E, Hardy DB (2011) Maternal protein restriction elevates cholesterol in adult rat offspring due to repressive changes in histone modifications at the cholesterol 7alpha-hydroxylase promoter. Mol Endocrinol 25:785–798. doi:10.1210/me.2010-0395

  • Sohi G, Revesz A, Hardy DB (2013) Nutritional mismatch in postnatal life of low birth weight rat offspring leads to increased phosphorylation of hepatic eukaryotic initiation factor 2 α in adulthood. Metabolism 62:1367–1374. doi:10.1016/j.metabol.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  • Sohi G, Revesz A, Ramkumar J, Hardy DB (2015) Higher hepatic miR-29 expression in undernourished male rats during the postnatal period targets the long-term repression of IGF-1. Endocrinology 156:3069–3076. doi:10.1210/EN.2015-1058

    Article  CAS  PubMed  Google Scholar 

  • Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Näslund E, Britton T, Concha H, Hassan M, RydĂ©n M, FrisĂ©n J, Arner P (2008) Dynamics of fat cell turnover in humans. Nature 453:783–787. doi:10.1038/nature06902

    Article  CAS  PubMed  Google Scholar 

  • Talens RP, Boomsma DI, Tobi EW, Kremer D, Jukema JW, Willemsen G, Putter H, Slagboom PE, Heijmans BT (2010) Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology. FASEB J Off Publ Fed Am Soc Exp Biol 24:3135–3144. doi:10.1096/fj.09-150490

    CAS  Google Scholar 

  • Valera A, Pujol A, Pelegrin M, Bosch F (1994) Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A 91:9151–9154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valsamakis G, Kanaka-Gantenbein C, Malamitsi-Puchner A, Mastorakos G (2006) Causes of intrauterine growth restriction and the postnatal development of the metabolic syndrome. Ann N Y Acad Sci 1092:138–147. doi:10.1196/annals.1365.012

    Article  CAS  PubMed  Google Scholar 

  • van der Zijl NJ, Goossens GH, Moors CCM, van Raalte DH, Muskiet MHA, Pouwels PJW, Blaak EE, Diamant M (2011) Ectopic fat storage in the pancreas, liver, and abdominal fat depots: impact on β-cell function in individuals with impaired glucose metabolism. J Clin Endocrinol Metab 96:459–467. doi:10.1210/jc.2010-1722

    Article  PubMed  Google Scholar 

  • van Straten EM, Bloks VW, Huijkman NC, Baller JF, Meer H, Lutjohann D, Kuipers F, Plosch T (2010) The liver X-receptor gene promoter is hypermethylated in a mouse model of prenatal protein restriction. Am J Physiol Integr Comp Physiol 298:R275–R282. doi:10.1152/ajpregu.00413.2009

    Article  Google Scholar 

  • Vo T, Revesz A, Ma N, Hardy DB (2013) Maternal protein restriction leads to enhanced hepatic gluconeogenic gene expression in adult male rat offspring due to impaired expression of the liver x receptor. J Endocrinol 218:85–97. doi:10.1530/JOE-13-0055

  • Volovelsky O, Weiss R (2011) Fatty liver disease in obese children – relation to other metabolic risk factors. Int J Pediatr Obes IJPO Off J Int Assoc Study Obes 6(Suppl 1):59–64. doi:10.3109/17477166.2011.583661

    Google Scholar 

  • Waterland RA (2006) Assessing the effects of high methionine intake on DNA methylation. J Nutr 136:1706S–1710S

    CAS  PubMed  Google Scholar 

  • Wilson MJ, Shivapurkar N, Poirier LA (1984) Hypomethylation of hepatic nuclear DNA in rats fed with a carcinogenic methyl-deficient diet. Biochem J 218:987–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97:1837–1847

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Liu S, Fu H, Li S, Tie Y, Zhu J, Xing R, Jin Y, Sun Z, Zheng X (2010) MicroRNA-193b regulates proliferation, migration and invasion in human hepatocellular carcinoma cells. Eur J Cancer Oxf Engl 1990(46):2828–2836. doi:10.1016/j.ejca.2010.06.127

    Article  Google Scholar 

  • Yamagata K, Furuta H, Oda N, Kaisaki PJ, Menzel S, Cox NJ, Fajans SS, Signorini S, Stoffel M, Bell GI (1996) Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature 384:458–460. doi:10.1038/384458a0

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang F, Didelot X, Bruce KD, Cagampang FR, Vatish M, Hanson M, Lehnert H, Ceriello A, Byrne CD (2009) Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring. BMC Genomics 10:478. doi:10.1186/1471-2164-10-478

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel B. Hardy Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Hardy, D.B. (2017). Perinatal Malnutrition and Epigenetic Regulation of Long-Term Metabolism. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_38-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31143-2_38-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31143-2

  • Online ISBN: 978-3-319-31143-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics