Skip to main content

Maternal Folate and DNA Methylation in Offspring

  • Living reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

Folate plays a critical role in DNA methylation as it is a key source of methyl donors via the one-carbon metabolism cycle. Folate supplementation is recommended during the periconceptional period for the prevention of neural tube defects in offspring. However, maternal folate levels during pregnancy may also influence the risk of many other conditions in offspring, but the underlying mechanisms involved are unclear. As such, it is important to investigate the possible association between maternal folate status and disease risk that act via modulation of the methylome. Improving methods and technologies available for profiling DNA methylation has allowed for rapidly expanding investigations in this field; however, limitations in study design remain. On the available evidence, global DNA methylation does not appear to be associated with maternal folate status in cord blood samples, but this response may be tissue specific as correlations have been found in fetal brains and adult murine intestines. Several studies have shown differential locus-specific methylation in response to maternal folate status. However, results may vary depending on the assay methods employed, including different assessments of the methylome, different measures of folate status, and cohort composition. Although maternal folate status is linked to disease risk, additional research is required to link this modulation of the methylome to altered health and disease outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

5CaC:

5-Carboxylcytosine

1CM:

One-carbon metabolism

5fmC:

5-Formylcytosine

5hmC:

5-Hydroxymethylcytosine

5mC:

5-Methylcystosine

AID:

Activation-induced deaminase

DHF:

Dihydrofolate

DHFR:

Dihydrofolate reductase

DMR:

Differentially methylated region

DNMT:

DNA methyltransferase

DOHaD:

Developmental origins of health and disease

IAP:

Intracisternal A particle

MS-PCR:

Methylation-specific polymerase chain reaction

MS-qPCR:

Methylation-specific quantitative polymerase chain reaction

MTHFR:

Methylenetetrahydrofolate reductase

MTR:

Methionine synthase

MTRR:

Methionine synthase reductase

NTDs:

Neural tube defects

SAH:

S-Adenosylhomocysteine

SAM:

S-Adenosylmethionine

SHMT:

Serine hydroxymethyltransferase

Tet:

Ten-eleven translocation

THF:

Tetrahydrofolate

References

  • Amarasekera M et al (2014) Genome-wide DNA methylation profiling identifies a folate-sensitive region of differential methylation upstream of ZFP57-imprinting regulator in humans. FASEB J 28(9):4068–4076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amouroux R et al (2016) De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Nat Cell Biol 18(2):225–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azzi S et al (2014) Degree of methylation of ZAC1 (PLAGL1) is associated with prenatal and post-natal growth in healthy infants of the EDEN mother child cohort. Epigenetics 9(3):338–345

    Article  CAS  PubMed  Google Scholar 

  • Ba Y et al (2011) Relationship of folate, vitamin B12 and methylation of insulin-like growth factor-II in maternal and cord blood. Eur J Clin Nutr 65(4):480–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey L, Gregory J (2006) Folate: present knowledge in nutrition, vol I. International Life Sciences Institute, Washington, DC, pp 278–301

    Google Scholar 

  • Barua S et al (2014a) Single-base resolution of mouse offspring brain methylome reveals epigenome modifications caused by gestational folic acid. Epigenetics Chromatin 7(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  • Barua S et al (2014b) Folic acid supplementation in pregnancy and implications in health and disease. J Biomed Sci 21:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Boeke CE et al (2012) Gestational intake of methyl donors and global LINE-1 DNA methylation in maternal and cord blood: prospective results from a folate-replete population. Epigenetics 7(3):253–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bortolus R et al (2014) Prevention of congenital malformations and other adverse pregnancy outcomes with 4.0 mg of folic acid: community-based randomized clinical trial in Italy and the Netherlands. BMC Pregnancy Childbirth 14:166

    Article  PubMed  PubMed Central  Google Scholar 

  • Bossenmeyer-Pourie C et al (2010) Methyl donor deficiency affects fetal programming of gastric ghrelin cell organization and function in the rat. Am J Pathol 176(1):270–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burdge GC, Lillycrop KA (2010) Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease. Annu Rev Nutr 30:315–339

    Article  CAS  PubMed  Google Scholar 

  • Chang H et al (2011) Tissue-specific distribution of aberrant DNA methylation associated with maternal low-folate status in human neural tube defects. J Nutr Biochem 22(12):1172–1177

    Article  CAS  PubMed  Google Scholar 

  • Choi S, Friso S (2010) Epigenetics: a new bridge between nutrition and health. Adv Nutr 1(1):8–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooney CA (2006) Germ cells carry the epigenetic benefits of grandmother’s diet. Proc Natl Acad Sci U S A 103(46):17071–17072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooney CA et al (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132(8 Suppl):2393s–2400s

    CAS  PubMed  Google Scholar 

  • Cooper WN et al (2012) DNA methylation profiling at imprinted loci after periconceptional micronutrient supplementation in humans: results of a pilot randomized controlled trial. FASEB J 26(5):1782–1790

    Article  CAS  PubMed  Google Scholar 

  • Cropley JE et al (2006) Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proc Natl Acad Sci U S A 103(46):17308–17312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duhl DM et al (1994) Neomorphic agouti mutations in obese yellow mice. Nat Genet 8(1):59–65

    Article  CAS  PubMed  Google Scholar 

  • Friso S, Choi SW (2005) Gene-nutrient interactions in one-carbon metabolism. Curr Drug Metab 6(1):37–46

    Article  CAS  PubMed  Google Scholar 

  • Fryer AA et al (2009) LINE-1 DNA methylation is inversely correlated with cord plasma homocysteine in man: a preliminary study. Epigenetics 4(6):394–398

    Article  CAS  PubMed  Google Scholar 

  • Fryer AA et al (2011) Quantitative, high-resolution epigenetic profiling of CpG loci identifies associations with cord blood plasma homocysteine and birth weight in humans. Epigenetics 6(1):86–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia MM et al (2011) Methyl donor deficiency induces cardiomyopathy through altered methylation/acetylation of PGC-1alpha by PRMT1 and SIRT1. J Pathol 225(3):324–335

    Article  CAS  PubMed  Google Scholar 

  • Godfrey KM et al (2011) Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 60(5):1528–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong L et al (2010) Gestational low protein diet in the rat mediates Igf2 gene expression in male offspring via altered hepatic DNA methylation. Epigenetics 5(7):619–626

    Article  CAS  PubMed  Google Scholar 

  • Guo F et al (2014a) Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell 15(4):447–458

    Article  CAS  PubMed  Google Scholar 

  • Guo H et al (2014b) The DNA methylation landscape of human early embryos. Nature 511(7511):606–610

    Article  CAS  PubMed  Google Scholar 

  • Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157(1):95–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoyo C et al (2011) Methylation variation at IGF2 differentially methylated regions and maternal folic acid use before and during pregnancy. Epigenetics 6(7):928–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoyo C et al (2014) Erythrocyte folate concentrations, CpG methylation at genomically imprinted domains, and birth weight in a multiethnic newborn cohort. Epigenetics 9(8):1120–1130

    Article  PubMed  PubMed Central  Google Scholar 

  • Iqbal K et al (2011) Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci U S A 108(9):3642–3647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joubert BR et al (2016) Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nat Commun 7:10577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YI et al (1996) Exon-specific DNA hypomethylation of the p53 gene of rat colon induced by dimethylhydrazine. Modulation by dietary folate. Am J Pathol 149(4):1129–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leighton PA et al (1995) An enhancer deletion affects both H19 and Igf2 expression. Genes Dev 9(17):2079–2089

    Article  CAS  PubMed  Google Scholar 

  • Lillycrop KA et al (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135(6):1382–1386

    CAS  PubMed  Google Scholar 

  • Mathers J (2008) Session 2: personalised nutrition. Epigenomics: a basis for understanding individual differences? Proc Nutr Soc 67(4):390–394

    Article  PubMed  Google Scholar 

  • Mayer W et al (2000) Demethylation of the zygotic paternal genome. Nature 403(6769):501–502

    Article  CAS  PubMed  Google Scholar 

  • McKay JA et al (2011a) Folate depletion during pregnancy and lactation reduces genomic DNA methylation in murine adult offspring. Genes Nutr 6(2):189–196

    Article  CAS  PubMed  Google Scholar 

  • McKay JA et al (2011b) Effect of maternal and post-weaning folate supply on gene-specific DNA methylation in the small intestine of weaning and adult apc and wild type mice. Front Genet 2:23

    Article  PubMed  PubMed Central  Google Scholar 

  • McKay JA et al (2011c) Maternal folate supply and sex influence gene-specific DNA methylation in the fetal gut. Mol Nutr Food Res 55(11):1717–1723

    Article  CAS  PubMed  Google Scholar 

  • Messerschmidt DM et al (2014) DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 28(8):812–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JW, Ulrich CM (2013) Folic acid and cancer – where are we today? Lancet 381(9871):974–976

    Article  PubMed  Google Scholar 

  • Mozhui K et al (2015) Ancestry dependent DNA methylation and influence of maternal nutrition. PLoS One 10(3):e0118466

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakouzi GA, Nadeau JH (2014) Does dietary folic acid supplementation in mouse NTD models affect neural tube development or gamete preference at fertilization? BMC Genet 15:91

    Article  PubMed  PubMed Central  Google Scholar 

  • Nardone S et al (2014) DNA methylation analysis of the autistic brain reveals multiple dysregulated biological pathways. Transl Psychiatry 4:e433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill RJ et al (2014) Maternal methyl supplemented diets and effects on offspring health. Front Genet 5:289

    PubMed  PubMed Central  Google Scholar 

  • Oswald J et al (2000) Active demethylation of the paternal genome in the mouse zygote. Curr Biol 10(8):475–478

    Article  CAS  PubMed  Google Scholar 

  • Pooya S et al (2012) Methyl donor deficiency impairs fatty acid oxidation through PGC-1alpha hypomethylation and decreased ER-alpha, ERR-alpha, and HNF-4alpha in the rat liver. J Hepatol 57(2):344–351

    Article  CAS  PubMed  Google Scholar 

  • Rougier N et al (1998) Chromosome methylation patterns during mammalian preimplantation development. Genes Dev 12(14):2108–2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiepers OJ et al (2012) DNA methylation and cognitive functioning in healthy older adults. Br J Nutr 107(5):744–748

    Article  CAS  PubMed  Google Scholar 

  • Schlinzig T et al (2009) Epigenetic modulation at birth – altered DNA-methylation in white blood cells after caesarean section. Acta Paediatr 98(7):1096–1099

    Article  CAS  PubMed  Google Scholar 

  • Schoofs T et al (2014) Origins of aberrant DNA methylation in acute myeloid leukemia. Leukemia 28(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Selhub J et al (2000) Relationship between plasma homocysteine and vitamin status in the Framingham study population. Impact of folic acid fortification. Public Health Rev 28(1–4):117–145

    CAS  PubMed  Google Scholar 

  • Shen L, Waterland RA (2007) Methods of DNA methylation analysis. Curr Opin Clin Nutr Metab Care 10(5):576–581

    Article  CAS  PubMed  Google Scholar 

  • Sinclair KD et al (2007) DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci U S A 104(49):19351–19356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SD (2011) Approach to epigenetic analysis in language disorders. J Neurodev Disord 3(4):356–364

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith ZD et al (2012) A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484(7394):339–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steegers-Theunissen RP et al (2009) Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS One 4(11):e7845

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun C et al (2015) Potential epigenetic mechanism in non-alcoholic fatty liver disease. Int J Mol Sci 16(3):5161–5179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang WW et al (2016) Specification and epigenetic programming of the human germ line. Nat Rev Genet 17:585–600

    Article  CAS  PubMed  Google Scholar 

  • Tornaletti S, Pfeifer GP (1995) Complete and tissue-independent methylation of CpG sites in the p53 gene: implications for mutations in human cancers. Oncogene 10(8):1493–1499

    CAS  PubMed  Google Scholar 

  • Turan N et al (2012) DNA methylation differences at growth related genes correlate with birth weight: a molecular signature linked to developmental origins of adult disease? BMC Med Genet 5:10

    CAS  Google Scholar 

  • van Mil NH et al (2014) Determinants of maternal pregnancy one-carbon metabolism and newborn human DNA methylation profiles. Reproduction 148(6):581–592

    Article  PubMed  Google Scholar 

  • Veena SR et al (2016) Association between maternal nutritional status in pregnancy and offspring cognitive function during childhood and adolescence; a systematic review. BMC Pregnancy Childbirth 16:220

    Article  PubMed  PubMed Central  Google Scholar 

  • Vidal AC et al (2014) Maternal stress, preterm birth, and DNA methylation at imprint regulatory sequences in humans. Genet Epigenet 6:37–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterland RA, Michels KB (2007) Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 27:363–388

    Article  CAS  PubMed  Google Scholar 

  • Waterland RA et al (2006) Maternal methyl supplements increase offspring DNA methylation at Axin fused. Genesis 44(9):401–406

    Article  CAS  PubMed  Google Scholar 

  • Waterland RA et al (2007) Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female. FASEB J 21(12):3380–3385

    Article  CAS  PubMed  Google Scholar 

  • Wolff GL et al (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 12(11):949–957

    CAS  PubMed  Google Scholar 

  • Wossidlo M et al (2011) 5-hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2:241

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma L. Beckett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Beckett, E.L., Lucock, M., Veysey, M., Joubert, B.R. (2017). Maternal Folate and DNA Methylation in Offspring. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31143-2_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31143-2

  • Online ISBN: 978-3-319-31143-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics