Skip to main content

Mass Spectrometry and Epigenetics

  • Living reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

Chromatin is a nucleoprotein complex composed of DNA and histone proteins. The concerted activity of chromatin-associated proteins, histone post-translational modifications, and DNA methylation induces epigenetic variations that regulate most of the physiological processes of eukaryotic cells, ranging from gene expression to DNA replication and repair. Epigenetics has also been shown to be tightly linked to cell metabolism. For instance, histone modifications are highly sensitive to the changes in the microenvironment and the local concentration of specific metabolites. Mass-spectrometry (MS)-based proteomics significantly contributed to the recent advances in the epigenetic field, by allowing the comprehensive analysis of histone post-translational modifications as well as the systematic identification of chromatin constituents.

In this chapter, we will provide a general overview of various MS-based experimental strategies developed to boost the epigenetic field, with references to the studies whereby chromatin biology was assessed in relation to cell metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AF-10:

Antisecretor factor 10

ChIP:

Chromatin immunoprecipitation

CID:

Collision-induced dissociation

CRISPR:

Clustered regularly interspaced short palindromic repeats

DDA:

Data-dependent acquisition

ECD:

Electron capture dissociation

ESC:

Embryonic stem cell

ETD:

Electron transfer dissociation

HAT:

Histone acetyltransferase

HMCV:

Cytomegalovirus

hmSILAC:

Heavy-methyl SILAC

KAT:

Lysine acetyl-transferase

LC:

Liquid chromatography

LF:

Label-free

MRM:

Multiple reaction monitoring

MS:

Mass-spectrometry

NPC:

Neural progenitor cell

NSC:

Neural stem cell

PTM:

Post-translational modification

RA:

Relative abundance

RP:

Reversed-phase

SAM:

S-adenosyl-methionine

SILAC:

Stable isotope labeling with amino acids in cell culture

SRM:

Selected reaction monitoring

TAL:

Transcription activator-like

TF:

Transcription factor

WCX-HILIC:

Weak-cation exchange hydrophilic interaction liquid chromatography

XIC:

MS-extracted ion chromatogram

References

  • Akhtar A, Becker PB (2000) Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in drosophila. Mol Cell 5:367–375

    Article  CAS  PubMed  Google Scholar 

  • Alabert C et al (2014) Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components. Nat Cell Biol 16:281–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alajem A et al (2015) Differential association of chromatin proteins identifies BAF60a/SMARCD1 as a regulator of embryonic stem cell differentiation. Cell Rep 10:2019–2031

    Article  CAS  PubMed  Google Scholar 

  • An M et al (2016) The alteration of H4-K16ac and H3-K27met influences the differentiation of neural stem cells. Anal Biochem 509:92–99

    Article  CAS  PubMed  Google Scholar 

  • Bartke T et al (2010) Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143:470–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beli P et al (2012) Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response. Mol Cell 46:212–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonaldi T, Imhof A, Regula JT (2004) A combination of different mass spectroscopic techniques for the analysis of dynamic changes of histone modifications. Proteomics 4:1382–1396

    Article  CAS  PubMed  Google Scholar 

  • Byrum SD et al (2012) ChAP-MS: a method for identification of proteins and histone posttranslational modifications at a single genomic locus. Cell Rep 2:198–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrum SD, Taverna SD, Tackett AJ (2013) Purification of a specific native genomic locus for proteomic analysis. Nucleic Acids Res 41:e195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary C et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840

    Article  CAS  PubMed  Google Scholar 

  • Cluntun AA et al (2015) The rate of glycolysis quantitatively mediates specific histone acetylation sites. Cancer Metab 3:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Curina A et al (2017) High constitutive activity of a broad panel of housekeeping and tissue-specific cis-regulatory elements depends on a subset of ETS proteins. Genes Dev 31:399–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darwanto A et al (2010) A modified “cross-talk” between histone H2B Lys-120 ubiquitination and H3 Lys-79 methylation. J Biol Chem 285:21868–21876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dejardin J, Kingston RE (2009) Purification of proteins associated with specific genomic Loci. Cell 136:175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberl HC et al (2013) A map of general and specialized chromatin readers in mouse tissues generated by label-free interaction proteomics. Mol Cell 49:368–378

    Article  CAS  PubMed  Google Scholar 

  • Fan J et al (2015) Metabolic regulation of histone post-translational modifications. ACS Chem Biol 10:95–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraga MF et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400

    Article  CAS  PubMed  Google Scholar 

  • Fujita T et al (2013) Identification of telomere-associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP). Sci Rep 3:3171

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao J et al (2014) Absolute quantification of histone PTM marks by MRM-based LC-MS/MS. Anal Chem 86:9679–9686

    Article  CAS  PubMed  Google Scholar 

  • Guo A et al (2014) Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol Cell Proteomics 13:372–387

    Article  CAS  PubMed  Google Scholar 

  • Hebert AS et al (2013) Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell 49:186–199

    Article  CAS  PubMed  Google Scholar 

  • Henry RA et al (2016) Interaction with the DNA repair protein thymine DNA Glycosylase regulates histone acetylation by p300. Biochemistry 55:6766–6775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam K et al (2012) Bioorthogonal profiling of protein methylation using azido derivative of S-adenosyl-L-methionine. J Am Chem Soc 134:5909–5915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffe JD et al (2013) Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia. Nat Genet 45:1386–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Ji X et al (2015) Chromatin proteomic profiling reveals novel proteins associated with histone-marked genomic regions. Proc Natl Acad Sci U S A 112:3841–3846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung HR et al (2010) Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12-deficient mouse embryonic stem cells reveals distinct, dynamic post-translational modifications at Lys-27 and Lys-36. Mol Cell Proteomics 9:838–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J et al (2006) Tudor, MBT and chromo domains gauge the degree of lysine methylation. EMBO Rep 7:397–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184:868–871

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Kustatscher G et al (2014) Chromatin enrichment for proteomics. Nat Protoc 9:2090–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert JP et al (2009) A novel proteomics approach for the discovery of chromatin-associated protein networks. Mol Cell Proteomics 8:870–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange M et al (2008) Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex. Genes Dev 22:2370–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen SC et al (2016) Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells. Sci Signal 9:rs9

    Article  PubMed  Google Scholar 

  • Lee JV et al (2014) Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab 20:306–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leroy G et al (2013) A quantitative atlas of histone modification signatures from human cancer cells. Epigenetics Chromatin 6:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X et al (2012) Quantitative chemical proteomics approach to identify post-translational modification-mediated protein-protein interactions. J Am Chem Soc 134:1982–1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maile TM et al (2015) Mass spectrometric quantification of histone post-translational modifications by a hybrid chemical labeling method. Mol Cell Proteomics 14:1148–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mews P et al (2014) Histone methylation has dynamics distinct from those of histone acetylation in cell cycle reentry from quiescence. Mol Cell Biol 34:3968–3980

    Article  PubMed  PubMed Central  Google Scholar 

  • Migliori V et al (2012) Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nat Struct Mol Biol 19:136–144

    Article  CAS  PubMed  Google Scholar 

  • Mitchell L et al (2013) mChIP-KAT-MS, a method to map protein interactions and acetylation sites for lysine acetyltransferases. Proc Natl Acad Sci U S A 110:E1641–E1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler G, Butter F, Mann M (2009) A SILAC-based DNA protein interaction screen that identifies candidate binding proteins to functional DNA elements. Genome Res 19:284–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammed H et al (2016) Rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) for analysis of chromatin complexes. Nat Protoc 11:316–326

    Article  CAS  PubMed  Google Scholar 

  • Moore KE et al (2013) A general molecular affinity strategy for global detection and proteomic analysis of lysine methylation. Mol Cell 50:444–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrish F et al (2010) Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry. J Biol Chem 285:36267–36274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie L et al (2017) The landscape of histone modifications in a high-fat diet-induced obese (DIO) mouse model. Mol Cell Proteomics 16:1324–1334

    Article  CAS  PubMed  Google Scholar 

  • Nikolov M et al (2011) Chromatin affinity purification and quantitative mass spectrometry defining the interactome of histone modification patterns. Mol Cell Proteomics M110(005371):10

    Google Scholar 

  • Noberini R et al (2016) Pathology tissue-quantitative mass spectrometry analysis to profile histone post-translational modification patterns in patient samples. Mol Cell Proteomics 15:866–877

    Article  CAS  PubMed  Google Scholar 

  • O’Connor CM et al (2014) Quantitative proteomic discovery of dynamic epigenome changes that control human cytomegalovirus (HCMV) infection. Mol Cell Proteomics 13:2399–2410

    Article  PubMed  PubMed Central  Google Scholar 

  • Ong SE, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1:2650–2660

    Article  CAS  PubMed  Google Scholar 

  • Ong SE, Mittler G, Mann M (2004) Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat Methods 1:119–126

    Article  CAS  PubMed  Google Scholar 

  • Pesavento JJ, Mizzen CA, Kelleher NL (2006) Quantitative analysis of modified proteins and their positional isomers by tandem mass spectrometry: human histone H4. Anal Chem 78:4271–4280

    Article  CAS  PubMed  Google Scholar 

  • Rafiee MR et al (2016) Expanding the circuitry of Pluripotency by selective isolation of chromatin-associated proteins. Mol Cell 64:624–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rardin MJ et al (2013) Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci U S A 110:6601–6606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sansoni V et al (2014) The histone variant H2A.B.bd is enriched at sites of DNA synthesis. Nucleic Acids Res 42:6405–6420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiio Y et al (2003) Quantitative proteomic analysis of chromatin-associated factors. J Am Soc Mass Spectrom 14:696–703

    Article  CAS  PubMed  Google Scholar 

  • Shyh-Chang N et al (2013) Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339:222–226

    Article  PubMed  Google Scholar 

  • Sidoli S, Cheng L, Jensen ON (2012) Proteomics in chromatin biology and epigenetics: elucidation of post-translational modifications of histone proteins by mass spectrometry. J Proteome 75:3419–3433

    Article  CAS  Google Scholar 

  • Sidoli S et al (2014) Middle-down hybrid chromatography/tandem mass spectrometry workflow for characterization of combinatorial post-translational modifications in histones. Proteomics 14:2200–2211

    Article  CAS  PubMed  Google Scholar 

  • Sirbu BM, Couch FB, Cortez D (2012) Monitoring the spatiotemporal dynamics of proteins at replication forks and in assembled chromatin using isolation of proteins on nascent DNA. Nat Protoc 7:594–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soldi M, Bonaldi T (2013) The proteomic investigation of chromatin functional domains reveals novel synergisms among distinct heterochromatin components. Mol Cell Proteomics 12:764–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soldi M, Bremang M, Bonaldi T (2014) Biochemical systems approaches for the analysis of histone modification readout. Biochim Biophys Acta 1839:657–668

    Article  CAS  PubMed  Google Scholar 

  • Spruijt CG et al (2013) Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152:1146–1159

    Article  CAS  PubMed  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  PubMed  Google Scholar 

  • Syka JE et al (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101:9528–9533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tammen SA, Friso S, Choi SW (2013) Epigenetics: the link between nature and nurture. Mol Asp Med 34:753–764

    Article  CAS  Google Scholar 

  • Thomas CE, Kelleher NL, Mizzen CA (2006) Mass spectrometric characterization of human histone H3: a bird’s eye view. J Proteome Res 5:240–247

    Article  CAS  PubMed  Google Scholar 

  • Torrente MP et al (2011) Proteomic interrogation of human chromatin. PLoS One 6:e24747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vermeulen M et al (2007) Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131:58–69

    Article  CAS  PubMed  Google Scholar 

  • Wang CI et al (2013) Chromatin proteins captured by ChIP-mass spectrometry are linked to dosage compensation in drosophila. Nat Struct Mol Biol 20:202–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Morris JR (2001) Genes, genetics, and epigenetics: a correspondence. Science 293:1103–1105

    Article  CAS  Google Scholar 

  • Yang YY, Ascano JM, Hang HC (2010) Bioorthogonal chemical reporters for monitoring protein acetylation. J Am Chem Soc 132:3640–3641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young NL et al (2009) High throughput characterization of combinatorial histone codes. Mol Cell Proteomics 8:2266–2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zee BM, Young NL, Garcia BA (2011) Quantitative proteomic approaches to studying histone modifications. Curr Chem Genomics 5:106–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zubarev RA et al (2000) Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 72:563–573

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziana Bonaldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Nicosia, L. et al. (2017). Mass Spectrometry and Epigenetics. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_115-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31143-2_115-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31143-2

  • Online ISBN: 978-3-319-31143-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics