Skip to main content

Preventing and Diagnosing Diabetic Complications: Epigenetics, miRNA, DNA Methylation, and Histone Modifications

Applications of miRNA, DNA Methylation, and Histone Modifications on Diagnosis and Therapeutics of Diabetic Embryopathy

  • Living reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

In previous chapter of this book, we have elucidated that three epigenetic modalities – microRNA (miRNA), DNA methylation, and histone modifications – are possible pathological pathways causing diabetic embryopathy. This chapter discusses the potential of utilizing epigenetic biomarkers for early diagnosis of embryonic malformation in pregnancy, and the therapeutics for diabetic embryopathy based on modifying epigenetic changes. We show evidence that circulating miRNAs, intermediates of the DNA methylation cycle, and epigenetic profiles of circulating nucleosomes, such as DNA methylation and histone modifications, have become promising biomarker candidates for diagnosis and prognosis of diabetic embryopathy. We also describe studies which have targeted the activity of hyperglycemia-induced miRNAs, using mimics or inhibitors; DNA methylation, using nutritional supplements; and histone modifying enzymes, using chemical inhibitors, to prevent diabetic embryopathy. Although we have the promising progress, the development of effective biomarkers and therapeutics for diabetic embryopathy still face many challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

5MC:

5-methylcytosine

CHD:

Congenital heart defect

DM:

Diabetes mellitus

Dnmt:

DNA methyltransferase

EGCG:

Polyphenol epigallocatechin gallate

FXN:

Frataxin

Grhl3:

Grainyhead like transcription factor 3

H3K27me3:

Histone 3 lysine 27 trimethylation

H3K4me2:

Histone 3 lysine 4 bimethylation

H3K9me3:

Histone 3 lysine 9 trimethylation

H4K20me3:

Histone 4 lysine 20 trimethylation

Hcy:

Homocysteine

KCNH2:

Potassium voltage-gated channel subfamily H member 2;

KCNQ1:

Potassium voltage-gated channel subfamily Q member 1

LINE-1:

Long interspersed nuclear element-1

MYH6:

Myosin heavy chain 6

NTD:

Neural tube defect

Pax3:

Paired box 3

SAH:

S-Adenosylhomocysteine

SAM:

S-adenosylmethionine

TSA:

Trichostatin A

Tulp3:

Tubby like protein 3

VPA:

Valproic acid

References

  • Baker L, Piddington R (1993) Diabetic embryopathy: a selective review of recent trends. J Diabetes Complicat 7(3):204–212

    Article  CAS  PubMed  Google Scholar 

  • Bauden M, Pamart D, Ansari D, Herzog M, Eccleston M, Micallef J, Andersson B, Andersson R (2015) Circulating nucleosomes as epigenetic biomarkers in pancreatic cancer. Clin Epigenetics 7:106. doi:10.1186/s13148-015-0139-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Blom HJ, Shaw GM, den Heijer M, Finnell RH (2006) Neural tube defects and folate: case far from closed. Nat Rev Neurosci 7(9):724–731. doi:10.1038/nrn1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury S, Cleves MA, MacLeod SL, James SJ, Zhao W, Hobbs CA (2011) Maternal DNA hypomethylation and congenital heart defects. Birth Defects Res A Clin Mol Teratol 91(2):69–76. doi:10.1002/bdra.20761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cockroft DL, Coppola PT (1977) Teratogenic effects of excess glucose on head-fold rat embryos in culture. Teratology 16(2):141–146. doi:10.1002/tera.1420160205

    Article  CAS  PubMed  Google Scholar 

  • Correa A, Gilboa SM, Botto LD, Moore CA, Hobbs CA, Cleves MA, Riehle-Colarusso TJ, Waller DK, Reece EA, National Birth Defects Prevention Study (2012) Lack of periconceptional vitamins or supplements that contain folic acid and diabetes mellitus-associated birth defects. Am J Obstet Gynecol 206(3):218 e1–218 e13. doi:10.1016/j.ajog.2011.12.018

    Article  Google Scholar 

  • Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA (2011) MicroRNAs in body fluids – the mix of hormones and biomarkers. Nat Rev Clin Oncol 8(8):467–477. doi:10.1038/nrclinonc.2011.76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crider KS, Yang TP, Berry RJ, Bailey LB (2012) Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate's role. Adv Nutr 3(1):21–38. doi:10.3945/an.111.000992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong D, Yu J, Wu Y, Fu N, Villela NA, Yang P (2015) Maternal diabetes triggers DNA damage and DNA damage response in neurulation stage embryos through oxidative stress. Biochem Biophys Res Commun 467(2):407–412. doi:10.1016/j.bbrc.2015.09.137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong D, Reece EA, Yang P (2016) The Nrf2 activator Vinylsulfone reduces high glucose-induced neural tube defects by suppressing cellular stress and apoptosis. Reprod Sci 23(8):993–1000. doi:10.1177/1933719115625846

    Article  CAS  PubMed  Google Scholar 

  • Dorval V, Nelson PT, Hebert SS (2013) Circulating microRNAs in Alzheimer's disease: the search for novel biomarkers. Front Mol Neurosci 6:24. doi:10.3389/fnmol.2013.00024

    PubMed  PubMed Central  Google Scholar 

  • Eikel D, Lampen A, Nau H (2006) Teratogenic effects mediated by inhibition of histone deacetylases: evidence from quantitative structure activity relationships of 20 valproic acid derivatives. Chem Res Toxicol 19(2):272–278. doi:10.1021/tx0502241

    Article  CAS  PubMed  Google Scholar 

  • Finer LB, Henshaw SK (2006) Disparities in rates of unintended pregnancy in the United States, 1994 and 2001. Perspect Sex Reprod Health 38(2):90–96. doi:10.1363/psrh.38.090.06

    Article  PubMed  Google Scholar 

  • Formby B, Schmid-Formby F, Jovanovic L, Peterson CM (1987) The offspring of the female diabetic “nonobese diabetic” (NOD) mouse are large for gestational age and have elevated pancreatic insulin content: a new animal model of human diabetic pregnancy. Proc Soc Exp Biol Med 184(3):291–294

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann K, Reiher H, Semmler K, Glockner E (1984) The effect of intensified conventional insulin therapy before and during pregnancy on the malformation rate in offspring of diabetic mothers. Exp Clin Endocrinol 83(2):173–177. doi:10.1055/s-0029-1210327

    Article  CAS  PubMed  Google Scholar 

  • Gabbay-Benziv R, Reece EA, Wang F, Yang P (2015) Birth defects in pregestational diabetes: defect range, glycemic threshold and pathogenesis. World J Diabetes 6(3):481–488. doi:10.4239/wjd.v6.i3.481

    Article  PubMed  PubMed Central  Google Scholar 

  • Geiger S, Holdenrieder S, Stieber P, Hamann GF, Bruening R, Ma J, Nagel D, Seidel D (2007) Nucleosomes as a new prognostic marker in early cerebral stroke. J Neurol 254(5):617–623. doi:10.1007/s00415-006-0407-5

    Article  PubMed  Google Scholar 

  • Gezer U, Mert U, Ozgur E, Yoruker EE, Holdenrieder S, Dalay N (2012) Correlation of histone methyl marks with circulating nucleosomes in blood plasma of cancer patients. Oncol Lett 3(5):1095–1098. doi:10.3892/ol.2012.600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gezer U, Yoruker EE, Keskin M, Kulle CB, Dharuman Y, Holdenrieder S (2015) Histone methylation marks on circulating nucleosomes as novel blood-based biomarker in colorectal cancer. Int J Mol Sci 16(12):29654–29662. doi:10.3390/ijms161226180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goretti E, Wagner DR, Devaux Y (2014) miRNAs as biomarkers of myocardial infarction: a step forward towards personalized medicine? Trends Mol Med 20(12):716–725. doi:10.1016/j.molmed.2014.10.006

    Article  CAS  PubMed  Google Scholar 

  • Gu H, Li H, Zhang L, Luan H, Huang T, Wang L, Fan Y, Zhang Y, Liu X, Wang W, Yuan Z (2012) Diagnostic role of microRNA expression profile in the serum of pregnant women with fetuses with neural tube defects. J Neurochem 122(3):641–649. doi:10.1111/j.1471-4159.2012.07812.x

    Article  CAS  PubMed  Google Scholar 

  • Gu H, Yu J, Dong D, Zhou Q, Wang JY, Fang S, Yang P (2016) High glucose-repressed CITED2 expression through miR-200b triggers the unfolded protein response and endoplasmic reticulum stress. Diabetes 65(1):149–163. doi:10.2337/db15-0108

    CAS  PubMed  Google Scholar 

  • Guay C, Regazzi R (2013) Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol 9(9):513–521. doi:10.1038/nrendo.2013.86

    Article  CAS  PubMed  Google Scholar 

  • Hobbs CA, Cleves MA, Melnyk S, Zhao W, James SJ (2005) Congenital heart defects and abnormal maternal biomarkers of methionine and homocysteine metabolism. Am J Clin Nutr 81(1):147–153

    CAS  PubMed  Google Scholar 

  • Holdenrieder S, Stieber P (2009) Clinical use of circulating nucleosomes. Crit Rev Clin Lab Sci 46(1):1–24. doi:10.1080/10408360802485875

    Article  CAS  PubMed  Google Scholar 

  • Holdenrieder S, Eichhorn P, Beuers U, Samtleben W, Schoenermarck U, Zachoval R, Nagel D, Stieber P (2006) Nucleosomal DNA fragments in autoimmune diseases. Ann N Y Acad Sci 1075:318–327. doi:10.1196/annals.1368.043

    Article  CAS  PubMed  Google Scholar 

  • Holdenrieder S, Nagel D, Schalhorn A, Heinemann V, Wilkowski R, von Pawel J, Raith H, Feldmann K, Kremer AE, Muller S, Geiger S, Hamann GF, Seidel D, Stieber P (2008) Clinical relevance of circulating nucleosomes in cancer. Ann N Y Acad Sci 1137:180–189. doi:10.1196/annals.1448.012

    Article  CAS  PubMed  Google Scholar 

  • Holing EV, Beyer CS, Brown ZA, Connell FA (1998) Why don't women with diabetes plan their pregnancies? Diabetes Care 21(6):889–895

    Article  CAS  PubMed  Google Scholar 

  • Homko CJ, Khandelwal M (1996) Glucose monitoring and insulin therapy during pregnancy. Obstet Gynecol Clin N Am 23(1):47–74

    Article  CAS  Google Scholar 

  • Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, Knippers R (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61(4):1659–1665

    CAS  PubMed  Google Scholar 

  • Kapusta L, Haagmans ML, Steegers EA, Cuypers MH, Blom HJ, Eskes TK (1999) Congenital heart defects and maternal derangement of homocysteine metabolism. J Pediatr 135(6):773–774

    Article  CAS  PubMed  Google Scholar 

  • Kelly TK, De Carvalho DD, Jones PA (2010) Epigenetic modifications as therapeutic targets. Nat Biotechnol 28(10):1069–1078. doi:10.1038/nbt.1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan SA, Reddy D, Gupta S (2015) Global histone post-translational modifications and cancer: biomarkers for diagnosis, prognosis and treatment? World J Biol Chem 6(4):333–345. doi:10.4331/wjbc.v6.i4.333

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitzmiller JL, Gavin LA, Gin GD, Jovanovic-Peterson L, Main EK, Zigrang WD (1991) Preconception care of diabetes. Glycemic control prevents congenital anomalies. JAMA 265(6):731–736

    Article  CAS  PubMed  Google Scholar 

  • Koch L (2013) Paediatrics: circulating microRNAs-predictors of obesity? Nat Rev Endocrinol 9(10):565. doi:10.1038/nrendo.2013.169

    Article  PubMed  Google Scholar 

  • Li Z, Rana TM (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13(8):622–638. doi:10.1038/nrd4359

    Article  CAS  PubMed  Google Scholar 

  • Li X, Weng H, Xu C, Reece EA, Yang P (2012) Oxidative stress-induced JNK1/2 activation triggers proapoptotic signaling and apoptosis that leads to diabetic embryopathy. Diabetes 61(8):2084–2092. doi:10.2337/db11-1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Xu C, Yang P (2013) c-Jun NH2-terminal kinase 1/2 and endoplasmic reticulum stress as interdependent and reciprocal causation in diabetic embryopathy. Diabetes 62(2):599–608. doi:10.2337/db12-0026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtenstein AV, Melkonyan HS, Tomei LD, Umansky SR (2001) Circulating nucleic acids and apoptosis. Ann N Y Acad Sci 945:239–249

    Article  CAS  PubMed  Google Scholar 

  • Lo YM, Rainer TH, Chan LY, Hjelm NM, Cocks RA (2000) Plasma DNA as a prognostic marker in trauma patients. Clin Chem 46(3):319–323

    CAS  PubMed  Google Scholar 

  • Loeken MR (2005) Current perspectives on the causes of neural tube defects resulting from diabetic pregnancy. Am J Med Genet C: Semin Med Genet 135C(1):77–87. doi:10.1002/ajmg.c.30056

    Article  Google Scholar 

  • Maeyama K, Kosaki R, Yoshihashi H, Casey B, Kosaki K (2001) Mutation analysis of left-right axis determining genes in NOD and ICR, strains susceptible to maternal diabetes. Teratology 63(3):119–126. doi:10.1002/tera.1022

    Article  CAS  PubMed  Google Scholar 

  • Massa V, Cabrera RM, Menegola E, Giavini E, Finnell RH (2005) Valproic acid-induced skeletal malformations: associated gene expression cascades. Pharmacogenet Genomics 15(11):787–800

    Article  CAS  PubMed  Google Scholar 

  • Menegola E, Di Renzo F, Broccia ML, Prudenziati M, Minucci S, Massa V, Giavini E (2005) Inhibition of histone deacetylase activity on specific embryonic tissues as a new mechanism for teratogenicity. Birth Defects Res B Dev Reprod Toxicol 74(5):392–398. doi:10.1002/bdrb.20053

    Article  CAS  PubMed  Google Scholar 

  • Mills JL, McPartlin JM, Kirke PN, Lee YJ, Conley MR, Weir DG, Scott JM (1995) Homocysteine metabolism in pregnancies complicated by neural-tube defects. Lancet 345(8943):149–151

    Article  CAS  PubMed  Google Scholar 

  • Mironiuk M, Kietlinska Z, Jezierska-Kasprzyk K, Piekosz-Orzechowska B (1997) A class of diabetes in mother, glycemic control in early pregnancy and occurrence of congenital malformations in newborn infants. Clin Exp Obstet Gynecol 24(4):193–197

    CAS  PubMed  Google Scholar 

  • Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105(30):10513–10518. doi:10.1073/pnas.0804549105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molloy AM, Weir DG, Scott JM (1999) Homocysteine, folate enzymes and neural tube defects. Haematologica 84(Suppl EHA-4):53–56

    PubMed  Google Scholar 

  • Navickas R, Gal D, Laucevicius A, Taparauskaite A, Zdanyte M, Holvoet P (2016) Identifying circulating microRNAs as biomarkers of cardiovascular disease: a systematic review. Cardiovasc Res 111(4):322–337. doi:10.1093/cvr/cvw174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada A, Kushima K, Aoki Y, Bialer M, Fujiwara M (2005) Identification of early-responsive genes correlated to valproic acid-induced neural tube defects in mice. Birth Defects Res A Clin Mol Teratol 73(4):229–238. doi:10.1002/bdra.20131

    Article  CAS  PubMed  Google Scholar 

  • Otsuji TG, Kurose Y, Suemori H, Tada M, Nakatsuji N (2012) Dynamic link between histone H3 acetylation and an increase in the functional characteristics of human ESC/iPSC-derived cardiomyocytes. PLoS One 7(9):e45010. doi:10.1371/journal.pone.0045010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker SE, Yazdy MM, Tinker SC, Mitchell AA, Werler MM (2013) The impact of folic acid intake on the association among diabetes mellitus, obesity, and spina bifida. Am J Obstet Gynecol 209(3):239 e1–239 e8. doi:10.1016/j.ajog.2013.05.047

    Article  Google Scholar 

  • Phelan SA, Ito M, Loeken MR (1997) Neural tube defects in embryos of diabetic mice: role of the Pax-3 gene and apoptosis. Diabetes 46(7):1189–1197

    Article  CAS  PubMed  Google Scholar 

  • Reece EA (2012) Diabetes-induced birth defects: what do we know? What can we do? Curr Diab Rep 12(1):24–32. doi:10.1007/s11892-011-0251-6

    Article  CAS  PubMed  Google Scholar 

  • Reece EA, Gabrielli S, Abdalla M (1988) The prevention of diabetes-associated birth defects. Semin Perinatol 12(4):292–301

    CAS  PubMed  Google Scholar 

  • Reece EA, Pinter E, Homko C, Wu YK, Naftolin F (1994) The yolk sac theory: closing the circle on why diabetes-associated malformations occur. J Soc Gynecol Investig 1(1):3–13

    Article  CAS  PubMed  Google Scholar 

  • Steegers-Theunissen RP, Boers GH, Trijbels FJ, Finkelstein JD, Blom HJ, Thomas CM, Borm GF, Wouters MG, Eskes TK (1994) Maternal hyperhomocysteinemia: a risk factor for neural-tube defects? Metab Clin Exp 43(12):1475–1480

    Article  CAS  PubMed  Google Scholar 

  • Tatewaki R, Otani H, Ando S, Hashimoto R, Naora H, Tanaka O (1991) Chromosome analysis of postimplantation stage embryos for studying possible causes of developmental abnormalities in nonobese diabetic mice. Biol Neonate 60(6):395–402

    Article  CAS  PubMed  Google Scholar 

  • The HAPO Study Cooperative Research Group, Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, Coustan DR, Hadden DR, McCance DR, Hod M, McIntyre HD, Oats JJ, Persson B, Rogers MS, Sacks DA (2008) Hyperglycemia and adverse pregnancy outcomes. N Engl J Med 358(19):1991–2002. doi:10.1056/NEJMoa0707943

    Article  Google Scholar 

  • Wang F, Fisher SA, Zhong J, Wu Y, Yang P (2015a) Superoxide dismutase 1 in vivo ameliorates maternal diabetes-induced apoptosis and heart defects through restoration of impaired Wnt signaling. Circ Cardiovasc Genet. doi:10.1161/CIRCGENETICS.115.001138

    Google Scholar 

  • Wang F, Reece EA, Yang P (2015b) Advances in revealing the molecular targets downstream of oxidative stress-induced proapoptotic kinase signaling in diabetic embryopathy. Am J Obstet Gynecol 213(2):125–134. doi:10.1016/j.ajog.2015.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Tian D, Hu J, Xing H, Sun M, Wang J, Jian Q, Yang H (2016) MiRNA-145 regulates the development of congenital heart disease through targeting FXN. Pediatr Cardiol 37(4):629–636. doi:10.1007/s00246-015-1325-z

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Reece EA, Zhong J, Dong D, Shen WB, Harman CR, Yang P (2016) Type 2 diabetes mellitus induces congenital heart defects in murine embryos by increasing oxidative stress, endoplasmic reticulum stress, and apoptosis. Am J Obstet Gynecol 215(3):366 e1–366 e10. doi:10.1016/j.ajog.2016.03.036

    Article  Google Scholar 

  • Xie WQ, Zhou L, Chen Y, Ni B (2016) Circulating microRNAs as potential biomarkers for diagnosis of congenital heart defects. World J Emerg Med 7(2):85–89. doi:10.5847/wjem.j.1920-8642.2016.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Zhao J, Evan G, Xiao C, Cheng Y, Xiao J (2012) Circulating microRNAs: novel biomarkers for cardiovascular diseases. J Mol Med 90(8):865–875. doi:10.1007/s00109-011-0840-5

    Article  CAS  PubMed  Google Scholar 

  • Yang P, Li X, Xu C, Eckert RL, Reece EA, Zielke HR, Wang F (2013) Maternal hyperglycemia activates an ASK1-FoxO3a-caspase 8 pathway that leads to embryonic neural tube defects. Sci Signal 6(290):ra74. doi:10.1126/scisignal.2004020

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang P, Reece EA, Wang F, Gabbay-Benziv R (2015) Decoding the oxidative stress hypothesis in diabetic embryopathy through proapoptotic kinase signaling. Am J Obstet Gynecol 212(5):569–579. doi:10.1016/j.ajog.2014.11.036

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Wu Y, Yang P (2016) High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects. J Neurochem 137(3):371–383. doi:10.1111/jnc.13587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeerleder S, Zwart B, Wuillemin WA, Aarden LA, Groeneveld AB, Caliezi C, van Nieuwenhuijze AE, van Mierlo GJ, Eerenberg AJ, Lammle B, Hack CE (2003) Elevated nucleosome levels in systemic inflammation and sepsis. Crit Care Med 31(7):1947–1951. doi:10.1097/01.CCM.0000074719.40109.95

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Mosley BS, Cleves MA, Melnyk S, James SJ, Hobbs CA (2006) Neural tube defects and maternal biomarkers of folate, homocysteine, and glutathione metabolism. Birth Defects Res A Clin Mol Teratol 76(4):230–236. doi:10.1002/bdra.20240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong J, Reece EA, Yang P (2015) Punicalagin exerts protective effect against high glucose-induced cellular stress and neural tube defects. Biochem Biophys Res Commun 467(2):179–184. doi:10.1016/j.bbrc.2015.10.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong J, Xu C, Gabbay-Benziv R, Lin X, Yang P (2016a) Superoxide dismutase 2 overexpression alleviates maternal diabetes-induced neural tube defects, restores mitochondrial function and suppresses cellular stress in diabetic embryopathy. Free Radic Biol Med 96:234–244. doi:10.1016/j.freeradbiomed.2016.04.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong J, Xu C, Reece EA, Yang P (2016b) The green tea polyphenol EGCG alleviates maternal diabetes-induced neural tube defects by inhibiting DNA hypermethylation. Am J Obstet Gynecol 215(3):368 e1–368 e10. doi:10.1016/j.ajog.2016.03.009

    Article  Google Scholar 

  • Zhu S, Cao L, Zhu J, Kong L, Jin J, Qian L, Zhu C, Hu X, Li M, Guo X, Han S, Yu Z (2013) Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Clin Chim Acta 424:66–72. doi:10.1016/j.cca.2013.05.010

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peixin Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG (outside the USA)

About this entry

Cite this entry

Dong, D., Reece, E.A., Yang, P. (2017). Preventing and Diagnosing Diabetic Complications: Epigenetics, miRNA, DNA Methylation, and Histone Modifications. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_101-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31143-2_101-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31143-2

  • Online ISBN: 978-3-319-31143-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics