Skip to main content

Functional Capacity Evaluation and Quantitative Gait Analysis: Lower Limb Disorders

  • Living reference work entry
  • First Online:
  • 178 Accesses

Abstract

Functional capacity evaluation as a discrete notion describes a standardized set of tests, mostly used by physicians and physiotherapists in order to assess a patient’s working capacity after trauma. But in a broadened manner, other methods such as instrumented gait analysis can be used for the evaluation of functional capacity post injury. This quantitative analysis of physical function shows repeatable and typical deviations in gait after different types of injury. The data derived by instrumented gait analysis are an objective measure of functional performance during active movement and thus complement static conventional imaging techniques as well as subjective assessments by physicians and physiotherapists. The results of gait analysis have to be interpreted carefully and critically, because the reasons for deviations in gait can be manifold: experimental errors, genuine deviations caused by the patient’s individual pathology or even malingering by the patient. In order to draw proper conclusions for the evaluation of the functional performance, it is important to include the multiple disciplines involved in the assessment and treatment of an injured patient.

This is a preview of subscription content, log in via an institution.

References

  • Antonova E, Le TK, Burge R, Mershon J (2013) Tibia shaft fractures: costly burden of nonunions. BMC Musculoskelet Disord 14:42. doi:10.1186/1471-2474-14-42

    Article  Google Scholar 

  • Baker R (2013) Measuring walking a handbook of clinical gait analysis. Mac Keith Press, London

    Google Scholar 

  • Bieniek S, Bethge M (2014) The reliability of WorkWell systems functional capacity evaluation: a systematic review. BMC Musculoskelet Disord 15:106. doi:10.1186/1471-2474-15-106

    Article  Google Scholar 

  • Brand A, Klöpfer-Krämer I, Lackner J, et al (2015) Ganganalyse nach Fersenbeinfraktur: Hat der Umfang der Rehabilitationsmaßnahmen einen Einfluss? In: Abstractband, 9. Jahrestagung der Deutschen Gesellschaft für Biomechanik (DGfB), Bonn, 2015

    Google Scholar 

  • Cappozzo A, Catani F, Della Croce U, Leardini A (1995) Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech 10:171–178. doi:10.1016/0268-0033(95)91394-T

    Article  Google Scholar 

  • Carson MC, Harrington ME, Thompson N et al (2001) Kinematic analysis of a multi-segment foot model for research and clinical applications: a repeatability analysis. J Biomech 34:1299–1307. doi:10.1016/S0021-9290(01)00101-4

    Article  Google Scholar 

  • Chaler J, Müller B, Maiques A, Pujol E (2010) Suspected feigned knee extensor weakness: usefulness of 3D gait analysis. Case report. Gait Posture 32:354–357. doi:10.1016/j.gaitpost.2010.06.007

    Article  Google Scholar 

  • Chen JJ (2007) Functional capacity evaluation & disability. Iowa Orthop J 27:121–127

    Google Scholar 

  • Cieza A, Stucki G (2008) The international classification of functioning disability and health: its development process and content validity. Eur J Phys Rehabil Med 44:303–313

    Google Scholar 

  • Clare MP, Sanders RW (2007) Calcaneal fractures. Fuß Sprunggelenk 5:58–73. doi:10.1007/s10302-007-0279-8

    Article  Google Scholar 

  • Cross M, Smith E, Hoy D et al (2014) The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis 73:1323–1330. doi:10.1136/annrheumdis-2013-204763

    Article  Google Scholar 

  • Davis RB, Ounpuu S, Tyburski D, Gage JR (1991) A gait analysis data collection and reduction technique. Hum Mov Sci 10:575–587. doi:10.1016/0167-9457(91)90046-Z

    Article  Google Scholar 

  • DeLuca PA, Davis RB, Ounpuu S, et al (1997) Alterations in surgical decision making in patients with cerebral palsy based on three-dimensional gait analysis. J Pediatr Orthop 17:608–614. doi:10.1097/01241398-199709000-00007

  • Fong K, Truong V, Foote CJ et al (2013) Predictors of nonunion and reoperation in patients with fractures of the tibia: an observational study. BMC Musculoskelet Disord 14:103. doi:10.1186/1471-2474-14-103

    Article  Google Scholar 

  • Gage JR (1993) Gait analysis. An essential tool in the treatment of cerebral palsy. Clin Orthop Relat Res 288:126–134

    Google Scholar 

  • Gouttebarge V, Wind H, Kuijer PPFM, Frings-Dresen MHW (2004) Reliability and validity of functional capacity evaluation methods: a systematic review with reference to Blankenship system, Ergos work simulator Ergo-Kit and Isernhagen work system. Int Arch Occup Environ Health 77:527–537

    Article  Google Scholar 

  • Kadaba MP, Ramakrishnan HK, Wooten ME et al (1989) Repeatability of kinematic, kinetic, and EMG data in normal adult gait.Pdf. J Orthop Res 7:849–860. doi:10.1002/jor.1100070611

    Article  Google Scholar 

  • Kadaba MP, Ramakrishnan HK, Wootten ME (1990) Measurement of lower-extremity kinematics during level walking. J Orthop Res 8:383–392. doi:10.1002/jor.1100080310

    Article  Google Scholar 

  • Kay RM, Dennis S, Rethlefsen S et al (2000) The effect of preoperative gait analysis on orthopaedic decision making. Clin Orthop Relat Res:217–222. doi:10.1097/00003086-200003000-00023

  • King SL, Barton GJ, Ranganath LR (2017) Interpreting sources of variation in clinical gait analysis: a case study. Gait Posture 52:1–4. doi:10.1016/j.gaitpost.2016.10.022

    Article  Google Scholar 

  • Lackner J, Pätzold R, Kröger I et al (2016) P01 functional analyses after tibial shaft fracture. Injury 47:S25. doi:10.1016/S0020-1383(16)30552-6

    Article  Google Scholar 

  • Leardini A, Sawacha Z, Paolini G et al (2007) A new anatomically based protocol for gait analysis in children. Gait Posture 26:560–571. doi:10.1016/j.gaitpost.2006.12.018

    Article  Google Scholar 

  • Lofterød B, Terjesen T, Skaaret I et al (2007) Preoperative gait analysis has a substantial effect on orthopedic decision making in children with cerebral palsy: comparison between clinical evaluation and gait analysis in 60 patients. Acta Orthop 78:74–80. doi:10.1080/17453670610013448

    Article  Google Scholar 

  • McLaughlin H (1963) Treatment of late complications after OS Calcis fractures. Clin Orthop Relat Res 30:111–115

    Article  Google Scholar 

  • Mitternacht J, Lampe R (2006) Calculation of functional kinetic parameters from the plantar pressure distribution measurement. Z Orthop Ihre Grenzgeb 144:410–418. doi:10.1055/s-2006-933494

    Article  Google Scholar 

  • Mündermann A, Dyrby CO, Andriacchi TP (2005) Secondary gait changes in patients with medial compartment knee osteoarthritis: increased load at the ankle, knee, and hip during walking. Arthritis Rheum 52:2835–2844. doi:10.1002/art.21262

    Article  Google Scholar 

  • Ounpuu S, Gage JR, Davis RB (1991) Three-dimensional lower extremity joint kinetics in normal pediatric gait. J Pediatr Orthop 11:341–349

    Article  Google Scholar 

  • Ounpuu S, Davis RB, DeLuca PA (1996) Joint kinetics: methods, interpretation and treatment decision-making in children with cerebral palsy and myelomeningocele. Gait Posture 4:62–78

    Article  Google Scholar 

  • Pollo FE, Jackson RW (2006) Knee bracing for unicompartmental osteoarthritis. J Am Acad Orthop Surg 14:5–11

    Article  Google Scholar 

  • Russell Esposito E, Aldridge Whitehead JM, Wilken JM (2015) Sound limb loading in individuals with unilateral transfemoral amputation across a range of walking velocities. Clin Biomech 30:1049–1055. doi:10.1016/j.clinbiomech.2015.09.008

    Article  Google Scholar 

  • Scammell BE (2014) Calcaneal fractures. BMJ 349:g4779. doi:10.1136/bmj.g4779

    Article  Google Scholar 

  • Schipplein OD, Andriacchi TP (1991) Interaction between active and passive knee stabilizers during level walking. J Orthop Res 9:113–119. doi:10.1002/jor.1100090114

    Article  Google Scholar 

  • Self BP, Greenwald RM, Pflaster DS (2000) A biomechanical analysis of a medial unloading brace for osteoarthritis in the knee. Arthritis Care Res 13:191–197

    Article  Google Scholar 

  • Sharma L, Song J, Felson D (2001) The role of knee alignment in disease progression and functional decline in knee osteoarthritis. JAMA 286:188–195

    Article  Google Scholar 

  • Statistisches Bundesamt (2013) Statistik schwerbehinderter Menschen

    Google Scholar 

  • Stebbins J, Harrington M, Thompson N et al (2006) Repeatability of a model for measuring multi-segment foot kinematics in children. Gait Posture 23:401–410. doi:10.1016/j.gaitpost.2005.03.002

    Article  Google Scholar 

  • Stucki G, Kostanjsek N, Üstün B, Cieza A (2008) ICF-based classification and measurement of functioning. Eur J Phys Rehabil Med 44:314–328. R33Y2008N03A0315 [pii]

    Google Scholar 

  • Swiontkowski MF, Engelberg R, Martin DP, Agel J (1999) Short Musculoskeletal Function Assessment Questionnaire. J Bone Jt Surgery; Am Vol 81:1245–1260

    Article  Google Scholar 

  • Whelan DB, Bhandari M, Stephen D et al (2010) Development of the radiographic union score for tibial fractures for the assessment of tibial fracture healing after intramedullary fixation. J Trauma 68:629–632. doi:10.1097/TA.0b013e3181a7c16d

    Article  Google Scholar 

  • Wren TAL, Kalisvaart MM, Ghatan CE et al (2009) Effects of preoperative gait analysis on costs and amount of surgery. J Pediatr Orthop 29:558–563. doi:10.1097/BPO.0b013e3181b2f8c2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella T. Klöpfer-Krämer .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Klöpfer-Krämer, I.T., Augat, P. (2017). Functional Capacity Evaluation and Quantitative Gait Analysis: Lower Limb Disorders. In: Müller, B., et al. Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-30808-1_89-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30808-1_89-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30808-1

  • Online ISBN: 978-3-319-30808-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics