Skip to main content

Next-Generation Models Using Optimized Joint Center Location

  • Living reference work entry
  • First Online:
  • 202 Accesses

Abstract

Joint center location is essential in order to define anatomical axes of skeletal segments and is therefore clinically significant for the calculation of joint kinematics during motion analysis. Different methods exist to localize joint centers using either predictive methods, based on anthropometric measurements, or functional methods, based on the relative movement of the segments adjacent to the joint. Validations of these methods using medical imaging have been extensively studied in the literature on different groups of subjects. Consequently, methods of correction between the calculated location of the joint center and the exact one, found by medical imaging, were suggested by several authors. Recent studies showed that new age-specific predictive methods could be computed in order to better locate joint coordinate systems. In the future, new techniques could use the exact locations of joint centers, which would be localized by medical imaging, in combination with motion capture techniques using registration techniques; thus, exact kinematics and kinetics of the joints could be computed.

This is a preview of subscription content, log in via an institution.

References

  • Andriacchi T, Strickland A (1985) Gait analysis as a tool to assess joint kinetics. In: Berme N, Engin A, Correia Da Silva K, (eds). Biomechanics of Normal and Pathological Human Articulating Joints. Martinus Nijhoff, Dordrecht: NATO SI Series. pp. 83–102.

    Google Scholar 

  • Assi A, Sauret C, Massaad A, Bakouny Z, Pillet H, Skalli W, et al (2016) Validation of hip joint center localization methods during gait analysis using 3D EOS imaging in typically developing and cerebral palsy children. Gait Posture [Internet] 42:30–5. Available from http://dx.doi.org/10.1016/j.gaitpost.2016.04.028%5Cn, http://linkinghub.elsevier.com/retrieve/pii/S0966636216300455%5Cn, http://dx.doi.org/10.1016/j.gaitpost.2015.06.089

    Google Scholar 

  • Bell AL, Brand RA, Pedersen DR (1989) Prediction of hip joint centre location from external landmarks. Hum Mov Sci [Internet] 8(1):3–16. Available from: http://www.sciencedirect.com/science/article/pii/0167945789900201. [cited 2015 Oct 27]

    Google Scholar 

  • Bell AL, Pedersen DR, Brand RA (1990) A comparison of the accuracy of several hip center. J Biomech 23:6–8

    Article  Google Scholar 

  • Camomilla V, Cereatti A, Vannozzi G, Cappozzo A (2006) An optimized protocol for hip joint centre determination using the functional method. J Biomech [Internet] 39(6):1096–1106. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0021929005001004

    Google Scholar 

  • Cappozzo A (1984) Gait analysis methodology. Hum Mov Sci 3:27–50

    Article  Google Scholar 

  • Cappozzo A, Catani F, Della Croce U, Leardini A (1995) Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech [Internet] 10(4):171–178. Available from: http://www.sciencedirect.com/science/article/pii/026800339591394T

    Google Scholar 

  • Cappozzo A, Della Croce U, Leardini A, Chiari L (2005) Human movement analysis using stereophotogrammetry. Part 1: theoretical background. Gait Posture [Internet] 21(2):186–196. Available from: http://www.sciencedirect.com/science/article/pii/S0966636204000256. [cited 2015 Nov 4]

    Google Scholar 

  • Chaibi Y, Cresson T, Aubert B, Hausselle J, Neyret P, Hauger O et al (2012) Fast 3D reconstruction of the lower limb using a parametric model and statistical inferences and clinical measurements calculation from biplanar X-rays. Comput Methods Biomech Biomed Eng 15(5):457–466

    Article  Google Scholar 

  • Davis RB, Ounpuu S, Tyburski D, Gage JR (1991) A gait analysis data collection and reduction technique. Hum Mov Sci 10(5):575–587

    Article  Google Scholar 

  • Dubousset J, Charpak G, Dorion I, Skalli W, Lavaste F, Deguise J et al (2005) A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system. Bull Acad Natl Med [Internet]. 189(2):287–297. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16114859

  • Ehrig RM, Taylor WR, Duda GN, Heller MO (2006) A survey of formal methods for determining the centre of rotation of ball joints. J Biomech [Internet] 39(15):2798–2809. Available from: http://linkinghub.elsevier.com/retrieve/pii/S002192900500446X

    Google Scholar 

  • Ehrig RM, Taylor WR, Duda GN, Heller MO (2007) A survey of formal methods for determining functional joint axes. J Biomech 40(10):2150–2157

    Article  Google Scholar 

  • Gage JR (1993) Gait analysis. An essential tool in the treatment of cerebral palsy. Clin Orthop Relat Res [Internet] (288):126–134. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8458125

  • Gamage SSHU, Lasenby J (2002) New least squares solutions for estimating the average centre of rotation and the axis of rotation. J Biomech 35(1):87–93

    Article  Google Scholar 

  • Halvorsen K (2003) Bias compensated least squares estimate of the center of rotation. J Biomech [Internet] 36(7):999–1008. Available from: http://www.sciencedirect.com/science/article/pii/S0021929003000708. [cited 2016 Jun 21]

    Google Scholar 

  • Harrington ME, Zavatsky AB, Lawson SEM, Yuan Z, Theologis TN (2007) Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging. J Biomech [Internet] 40(3):595–602. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0021929006000583

    Google Scholar 

  • Humbert L, De Guise JA, Aubert B, Godbout B, Skalli W (2009) 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys 31(6):681–687

    Article  Google Scholar 

  • Jenkyn TR, Nicol AC (2007) A multi-segment kinematic model of the foot with a novel definition of forefoot motion for use in clinical gait analysis during walking. J Biomech 40(14):3271–3278

    Article  Google Scholar 

  • Kiernan D, Malone A, O’Brien T, Simms CK (2015) The clinical impact of hip joint centre regression equation error on kinematics and kinetics during paediatric gait. Gait Posture [Internet] 41(1):175–179. Available from: http://www.sciencedirect.com/science/article/pii/S0966636214007255

    Google Scholar 

  • Leardini A, Cappozzo A, Catani F, Toksvig-Larsen S, Petitto A, Sforza V et al (1999a) Validation of a functional method for the estimation of hip joint centre location. J Biomech 32(1):99–103

    Article  Google Scholar 

  • Leardini A, O’Connor JJ, Catani F, Giannini S (1999b) Kinematics of the human ankle complex in passive flexion; a single degree of freedom system. J Biomech 32(2):111–118

    Article  Google Scholar 

  • Lempereur M, Leboeuf F, Brochard S, Rousset J, Burdin V, Rémy-Néris O (2010) In vivo estimation of the glenohumeral joint centre by functional methods: accuracy and repeatability assessment. J Biomech 43(2):370–374

    Article  Google Scholar 

  • Lempereur M, Brochard S, Rémy-Néris O (2011) Repeatability assessment of functional methods to estimate the glenohumeral joint centre. Comput Methods Biomech Biomed Eng 5842:1–6

    Google Scholar 

  • Lempereur M, Kostur L, Leboucher J, Brochard S, Rémy-Néris O (2013) 3D freehand ultrasound to estimate the glenohumeral rotation centre. Comput Methods Biomech Biomed Eng [Internet] 16(Suppl 1):214–215. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23923914

    Google Scholar 

  • Lempereur M, Leboeuf F, Brochard S, Rémy-Néris O (2014) Effects of glenohumeral joint centre mislocation on shoulder kinematics and kinetics. Comput Methods Biomech Biomed Eng [Internet] 17(Suppl 1):130–131. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25074199

    Google Scholar 

  • Meskers CGM, Van Der Helm FCT, Rozendaal LA, Rozing PM (1997) In vivo estimation of the glenohumeral joint rotation center from scapular bony landmarks by linear regression. J Biomech 31(1):93–96

    Article  Google Scholar 

  • Nérot A, Choisne J, Amabile C, Travert C, Pillet H, Wang X, et al (2015a) A 3D reconstruction method of the body envelope from biplanar X-rays: evaluation of its accuracy and reliability. J Biomech [Internet] 48(16):4322–4326. Available from: http://dx.doi.org/10.1016/j.jbiomech.2015.10.044

    Google Scholar 

  • Nérot A, Wang X, Pillet H, Skalli W (2015b) Estimation of hip joint center from the external body shape: a preliminary study. Comput Methods Biomech Biomed Eng [Internet] 5842:1–2. Available from: http://www.tandfonline.com/doi/full/10.1080/10255842.2015.1069603

  • Peters A, Baker R, Sangeux M (2010) Validation of 3-D freehand ultrasound for the determination of the hip joint centre. Gait Posture [Internet] 31(4):530–2. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0966636210000299

    Google Scholar 

  • Peters A, Baker R, Morris ME, Sangeux M (2012) A comparison of hip joint centre localisation techniques with 3-DUS for clinical gait analysis in children with cerebral palsy. Gait Posture [Internet] 36(2):282–286. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0966636212000999

    Google Scholar 

  • Piazza SJ, Okita N, Cavanagh PR (2001) Accuracy of the functional method of hip joint center location: effects of limited motion and varied implementation. J Biomech 34(7):967–973

    Article  Google Scholar 

  • Piazza SJ, Erdemir A, Okita N, Cavanagh PR (2004) Assessment of the functional method of hip joint center location subject to reduced range of hip motion. J Biomech 37:349–356

    Article  Google Scholar 

  • Pillet H, Sangeux M, Hausselle J, El Rachkidi R, Skalli W (2014) A reference method for the evaluation of femoral head joint center location technique based on external markers. Gait Posture [Internet] 39(1):655–658. Available from: http://linkinghub.elsevier.com/retrieve/pii/S096663621300578X

    Google Scholar 

  • Pratt V (1987) Direct least-squares fitting of algebraic surfaces. Comput Graph (ACM) 21:145–152

    Article  MathSciNet  Google Scholar 

  • Ramsey DK, Wretenberg PF (1999) Biomechanics of the knee: methodological considerations in the in vivo kinematic analysis of the tibiofemoral and patellofemoral joint. Clin Biomech 14(9):595–611

    Article  Google Scholar 

  • Sangeux M, Peters A, Baker R (2011) Hip joint centre localization: evaluation on normal subjects in the context of gait analysis. Gait Posture [Internet] 34(3):324–328. Available from: http://dx.doi.org/10.1016/j.gaitpost.2011.05.019

    Google Scholar 

  • Sangeux M, Pillet H, Skalli W (2014) Which method of hip joint centre localisation should be used in gait analysis? Gait Posture [Internet] 40(1):20–25. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0966636214000642

    Google Scholar 

  • Scheys L, Spaepen A, Suetens P, Jonkers I (2008) Calculated moment-arm and muscle-tendon lengths during gait differ substantially using MR based versus rescaled generic lower-limb musculoskeletal models. Gait Posture 28(4):640–648

    Article  Google Scholar 

  • Schwartz MH, Rozumalski A (2005) A new method for estimating joint parameters from motion data. J Biomech [Internet] 38(1):107–116. Available from: http://linkinghub.elsevier.com/retrieve/pii/S002192900400137X

    Google Scholar 

  • Stagni R, Leardini A, Cappozzo A, Grazia Benedetti M, Cappello A (2000) Effects of hip joint centre mislocation on gait analysis results. J Biomech 33(11):1479–1487

    Article  Google Scholar 

  • Stebbins J, Harrington M, Thompson N, Zavatsky A, Theologis T (2006) Repeatability of a model for measuring multi-segment foot kinematics in children. Gait Posture. 23(4):401–410

    Article  Google Scholar 

  • Tylkowski C, Simon S, Mansour J (1982) Internal rotation gait in spastic cerebral palsy. In: Nelson JP (ed) Proceedings of the 10th Open Scientific Meeting of the Hip Society. C. V. Mosby, St Louis, pp 89–125

    Google Scholar 

  • Woltring H, Huiskes R, de Lange A, Veldpaus F (1985) Finite centroid and helical axis estimation from noisy landmark measurements in the study of human joint kinematics. J Biomech 18(5):379–389

    Article  Google Scholar 

  • Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D et al (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion – Part I: ankle, hip, and spine. J Biomech [Internet] 35(4):543–548. Available from: http://www.sciencedirect.com/science/article/pii/S0021929001002226

    Google Scholar 

  • Wu G, Van Der Helm FCT, Veeger HEJ, Makhsous M, Van Roy P, Anglin C et al (2005) ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion – Part II: shoulder, elbow, wrist and hand. J Biomech 38(5):981–992

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman Assi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Assi, A., Skalli, W., Ghanem, I. (2016). Next-Generation Models Using Optimized Joint Center Location. In: Müller, B., et al. Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-30808-1_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30808-1_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-30808-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics