Advertisement

Simulation of Soft Tissue Loading from Observed Movement Dynamics

  • Scott C. E. Brandon
  • Colin R. Smith
  • Darryl G. Thelen
Living reference work entry

Abstract

An understanding of in vivo soft tissue loading is essential for investigating the causes of traumatic injury, progression of degenerative joint disease, and options for orthopedic treatment. Modern motion analysis technologies can be used to observe movement dynamics and characterize resultant joint loads. However, technologies for directly measuring the loads on in vivo soft tissues (e.g., ligament, tendon, and cartilage) generally require invasive techniques and thus are impractical for widespread use. In this chapter, we review two computational modeling approaches for characterizing soft tissue loads from observed movement dynamics. In the traditional sequential simulation approach, linked-segment dynamic musculoskeletal models are first solved for muscle and resultant joint loading. These loads are then applied as boundary conditions on a more detailed model of the joint to estimate loading and deformation of ligament and cartilage tissues. The primary limitation of the sequential approach is that it decouples movement dynamics and joint mechanics, making it infeasible to predict how muscle coordination may adapt to changes in soft tissue behavior. To overcome this limitation, concurrent simulation approaches have been introduced, which enable simultaneous solution of muscle forces and soft tissue mechanics underlying human movement. We demonstrate the advantage of the concurrent approach to directly probe inherent coupling between muscle coordination, joint kinematics, cartilage contact pressure, and ligamentous behavior that can arise with soft tissue damage. We conclude with suggestions for further development and use of concurrent simulation approaches that could greatly extend our ability to investigate both surgical and rehabilitative treatments of musculoskeletal pathologies.

Keywords

Joint Mechanics Cartilage Pressure Contact Force Musculoskeletal Model Ligament Force Simulation Secondary Kinematics Concurrent Simulation COMAK Optimization Inverse Dynamics Force Dependent Kinematics Knee Multibody 

References

  1. Adouni M, Dhaher YY (2016) A multi-scale elasto-plastic model of articular cartilage. J Biomech 49:2891–2898. doi:10.1016/j.jbiomech.2016.06.031CrossRefGoogle Scholar
  2. Adouni M, Shirazi-Adl A (2014) Partitioning of knee joint internal forces in gait is dictated by the knee adduction angle and not by the knee adduction moment. J Biomech 47:1696–1703. doi:10.1016/j.jbiomech.2014.02.028CrossRefGoogle Scholar
  3. Andersen MS, Damsgaard M, Rasmussen J (2011) Force-dependent kinematics: a new analysis method for non-conforming joints. 13th Biennial International Symposium on Computer Simulation in Biomechanics, Leuven, 2–3Google Scholar
  4. Anderson FC, Pandy MG (2001) Dynamic optimization of human walking. J Biomech Eng 123:381–390CrossRefGoogle Scholar
  5. Anderson FC, Pandy MG (1999) A dynamic optimization solution for vertical jumping in three dimensions. Comput Biomech Biomed Engin 2:201–231CrossRefGoogle Scholar
  6. Anderson IA, MacDiarmid AA, Harris ML et al (2003) A novel method for measuring medial compartment pressures within the knee joint in-vivo. J Biomech 36:1391–1395. doi:10.1016/S0021-9290(03)00158-1CrossRefGoogle Scholar
  7. Andriacchi TP, Koo S, Scanlan SF (2009) Gait mechanics influence healthy cartilage morphology and osteoarthritis of the knee. J Bone Joint Surg Am 91(Suppl 1):95–101. doi:10.2106/JBJS.H.01408CrossRefGoogle Scholar
  8. Arnold AS, Liu MQ, Schwartz MH et al (2006) The role of estimating muscle-tendon lengths and velocities of the hamstrings in the evaluation and treatment of crouch gait. Gait Posture 23:273–281. doi:10.1016/j.gaitpost.2005.03.003CrossRefGoogle Scholar
  9. Arnold EM, Ward SR, Lieber RL, Delp SL (2010) A model of the lower limb for analysis of human movement. Ann Biomed Eng 38:269–279. doi:10.1007/s10439-009-9852-5CrossRefGoogle Scholar
  10. Beard DJ, Soundarapandian RS, O’Connor JJ, Dodd CAF (1996) Gait and electromyographic analysis of anterior cruciate ligament deficient subjects. Gait Posture 4:83–88. doi:10.1016/0966-6362(95)01036-XCrossRefGoogle Scholar
  11. Bei Y, Fregly BJ (2004) Multibody dynamic simulation of knee contact mechanics. Med Eng Phys 26:777–789CrossRefGoogle Scholar
  12. Benoit DL, Ramsey DK, Lamontagne M et al (2006) Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture 24:152–164. doi:10.1016/j.gaitpost.2005.04.012CrossRefGoogle Scholar
  13. Bergmann G, Graichen F, Rohlmann A, et al (2007) Loads acting on orthopaedic implants. Measurements and practical applications. Orthopade 36:195–196, 198–200, 202–204. doi: 10.1007/s00132-007-1055-xGoogle Scholar
  14. Bergmann G, Graichen F, Rohlmann A (1993) Hip joint loading during walking and running, measured in two patients Comparison of intestinal absorption of cholesterol with different plant sterols in man Cite Discreet indiscretions: The social organization of gossip Quantized periodic orbits in lar. J Biomech 26:969–990CrossRefGoogle Scholar
  15. Bertram JEA (2005) Constrained optimization in human walking: cost minimization and gait plasticity. J Exp Biol 208:979–991. doi:10.1242/jeb.01498CrossRefGoogle Scholar
  16. Besier TF, Gold GE, Beaupré GS, Delp SL (2005) A modeling framework to estimate patellofemoral joint cartilage stress in vivo. Med Sci Sports Exerc 37:1924–1930. doi:10.1249/01.mss.0000176686.18683.64CrossRefGoogle Scholar
  17. Beynnon BD, Johnson RJ, Fleming BC et al (1997) The strain behavior of the anterior cruciate ligament during squatting and active flexion-extension. A comparison of an open and a closed kinetic chain exercise. Am J Sports Med 25:823–829. doi:10.1177/036354659702500616CrossRefGoogle Scholar
  18. Blankevoort L, Huiskes R (1991) Ligament-bone interaction in a three-dimensional model of the knee. J Biomech Eng 113:263–269. doi:10.1115/1.2894883CrossRefGoogle Scholar
  19. Blankevoort L, Kuiper JH, Huiskes R, Grootenboer HJ (1991) Articular contact in a three-dimensional model of the knee. J Biomech 24:1019–1031. doi:10.1016/0021-9290(91)90019-JCrossRefGoogle Scholar
  20. Blemker SS, Asakawa DS, Gold GE, Delp SL (2007) Image-based musculoskeletal modeling: applications, advances, and future opportunities. J Magn Reson Imaging 25:441–451. doi:10.1002/jmri.20805CrossRefGoogle Scholar
  21. Brand RA, Crowninshield RD, Wittstock CE et al (1982) A model of lower extremity muscular anatomy. J Biomech Eng 104:304–310CrossRefGoogle Scholar
  22. Brandon SCE, Miller RH, Thelen DG, Deluzio KJ (2014) Selective lateral muscle activation in moderate medial knee osteoarthritis subjects does not unload medial knee condyle. J Biomech 47:1409–1415. doi:10.1016/j.jbiomech.2014.01.038CrossRefGoogle Scholar
  23. Buchanan TS, Lloyd DG, Manal K, Besier TF (2004) Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. J Appl Biomech 20:367–395. doi:10.1016/j.bbi.2008.05.010CrossRefGoogle Scholar
  24. Cabaud HE (1983) Biomechanics of the anterior cruciate ligament. Clin Orthop Relat Res 26–31. doi: 10.1097/00003086-198301000-00007Google Scholar
  25. Cappozzo A, Della Croce U, Leardini A, Chiari L (2005) Human movement analysis using stereophotogrammetry. Part 1: theoretical background. Gait Posture 21:186–196. doi:10.1016/j.gaitpost.2004.01.010Google Scholar
  26. Carbone V, Fluit R, Pellikaan P et al (2015) TLEM 2.0 – a comprehensive musculoskeletal geometry dataset for subject-specific modeling of lower extremity. J Biomech 48:734–741. doi:10.1016/j.jbiomech.2014.12.034CrossRefGoogle Scholar
  27. Caruntu DI, Hefzy MS (2004) 3-D anatomically based dynamic modeling of the human knee to include Tibio-femoral and Patello-femoral joints. J Biomech Eng 126:44. doi:10.1115/1.1644565CrossRefGoogle Scholar
  28. Chen Z, Zhang Z, Wang L, Li D, Zhang Y, Jin Z (2016) Evaluation of a subject-specific musculoskeletal modeling framework for load prediction in total knee arthroplasty. Med Eng Phys 38(8):708–716. https://doi.org/10.1016/j.medengphy.2016.04.010CrossRefGoogle Scholar
  29. Chernak L, Thelen DG, Slane LC, Thelen DG (2014) Non-uniform displacements within the Achilles tendon observed during passive and eccentric loading. J Biomech 47:2831–2835. doi:10.1016/j.jbiomech.2014.07.032CrossRefGoogle Scholar
  30. Chiari L, Della Croce U, Leardini A, Cappozzo A (2005) Human movement analysis using stereophotogrammetry. Part 2: instrumental errors. Gait Posture 21:197–211. doi:10.1016/j.gaitpost.2004.04.004CrossRefGoogle Scholar
  31. Christophy M, Faruk Senan NA, Lotz JC, O’Reilly OM (2012) A musculoskeletal model for the lumbar spine. Biomech Model Mechanobiol 11:19–34. doi:10.1007/s10237-011-0290-6CrossRefGoogle Scholar
  32. Crowninshield RD, Brand RA (1981) A physiologically based criterion of muscle force prediction in locomotion. J Biomech 14:793–801CrossRefGoogle Scholar
  33. D’Lima DD, Fregly BJ, Colwell CW Jr, Colwell CW (2013) Implantable sensor technology: measuring bone and joint biomechanics of daily life in vivo. Arthritis Res Ther 15:203. doi:10.1186/ar4138CrossRefGoogle Scholar
  34. D’Lima DD, Patil S, Steklov N et al (2006) Tibial forces measured in vivo after total knee arthroplasty. J Arthroplast 21:255–262. doi:10.1016/j.arth.2005.07.011CrossRefGoogle Scholar
  35. Davy DT, Audu ML (1987) A dynamic optimization technique for predicting muscle forces in the swing phase of gait. J Biomech 20:187–201. doi:10.1016/0021-9290(87)90310-1CrossRefGoogle Scholar
  36. Delp SLL, Loan JPP, Hoy MGG et al (1990) An interactive graphics-based model of the lower extremity to study orthopedic surgical procedures. IEEE Trans Biomed Eng 37:757–767. doi:10.1109/10.102791CrossRefGoogle Scholar
  37. Demers MS, Pal S, Delp SL (2014) Changes in tibiofemoral forces due to variations in muscle activity during walking. J Orthop Res 32:769–776. doi:10.1002/jor.22601CrossRefGoogle Scholar
  38. Dhaher YY, Kwon T-H, Barry M (2010) The effect of connective tissue material uncertainties on knee joint mechanics under isolated loading conditions. J Biomech 43:3118–3125. doi:10.1016/j.jbiomech.2010.08.005CrossRefGoogle Scholar
  39. Dhaher YY, Salehghaffari S, Adouni M (2016) Anterior laxity, graft-tunnel interaction and surgical design variations during anterior cruciate ligament reconstruction: a probabilistic simulation of the surgery. J Biomech 49:3009–3016. doi:10.1016/j.jbiomech.2016.07.019CrossRefGoogle Scholar
  40. Ellis BJ, Drury NJ, Moore SM et al (2010) Finite element modelling of the glenohumeral capsule can help assess the tested region during a clinical exam. Comput Methods Biomech Biomed Engin 13:413–418. doi:10.1080/10255840903317378CrossRefGoogle Scholar
  41. English TA, Kilvington M (1979) In vivo records of hip loads using a femoral implant with telemetric output (a prelimary report). J Biomed Eng 1:111–115. doi:10.1016/0141-5425(79)90066-9CrossRefGoogle Scholar
  42. Erdemir A (2016) Open knee: open source modeling & simulation to enable scientific discovery and clinical care in knee biomechanics. J Knee Surg 19:107–116. doi:10.1016/j.jocn.2013.06.015.C-reactiveGoogle Scholar
  43. Erdemir A (2013) Open knee: a pathway to community driven modeling and simulation in joint biomechanics. J Med Device 7:40910. doi:10.1115/1.4025767CrossRefGoogle Scholar
  44. Erdemir A, McLean S, Herzog W, van den Bogert AJ (2007) Model-based estimation of muscle forces exerted during movements. Clin Biomech 22:131–154CrossRefGoogle Scholar
  45. Eschweiler J, Stromps J-P, Fischer M et al (2016) Development of a biomechanical model of the wrist joint for patient-specific model guided surgical therapy planning: part 1. Proc Inst Mech Eng Part H J Eng Med 230:310–325. doi:10.1177/0954411916632791CrossRefGoogle Scholar
  46. Eskinazi I, Fregly BJ (2016) An open-source toolbox for surrogate modeling of joint contact mechanics. IEEE Trans Bio-Med Eng 63(2):269–277. https://doi.org/10.1109/TBME.2015.2455510CrossRefGoogle Scholar
  47. Essinger JR, Leyvraz PF, Heegard JH, Robertson DD (1989) A mathematical model for the evaluation of the behavior during flexion of condylar-type knee prostheses. J Biomech 22:1229–12241CrossRefGoogle Scholar
  48. Farrokhi S, Voycheck CA, Klatt BA et al (2014) Altered tibiofemoral joint contact mechanics and kinematics in patients with knee osteoarthritis and episodic complaints of joint instability. Clin Biomech (Bristol, Avon) 29:629–635. doi:10.1016/j.clinbiomech.2014.04.014CrossRefGoogle Scholar
  49. Ferguson SJ, Bryant JT, Ganz R, Ito K (2000) The influence of the acetabular labrum on hip joint cartilage consolidation: a poroelastic finite element model. J Biomech 33:953–960. doi:10.1016/S0021-9290(00)00042-7CrossRefGoogle Scholar
  50. Finni T, Komi PV, Lepola V (2000) In vivo human triceps surae and quadriceps femoris muscle function in a squat jump and counter. Eur J Appl Physiol 83:416–426. doi:10.1007/s004210000289CrossRefGoogle Scholar
  51. Fleming BC, Beynnon BD (2004) In vivo measurement of ligament/tendon strains and forces: a review. Ann Biomed Eng 32:318–328CrossRefGoogle Scholar
  52. Fukashiro S, Komi PV, Järvinen M, Miyashita M (1995) In vivo achilles tendon loading’ during jumping in humans. Eur J Appl Physiol Occup Physiol 71:453–458. doi:10.1007/BF00635880CrossRefGoogle Scholar
  53. Gerber H, Foresti M, Zihlmann M, Stussi E (2007) Method to simultaneously measure kinetic and 3D kinematic data during normal level walking using KISTLER force plates, VICON system and video-fluoroscopy. J Biomech 40:S405. doi:10.1016/S0021-9290(07)70400-1CrossRefGoogle Scholar
  54. Gerus P, Sartori M, Besier TF et al (2013) Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. J Biomech 46:2778–2786. doi:10.1016/j.jbiomech.2013.09.005CrossRefGoogle Scholar
  55. Grundy M, Tosh PA, RD ML, Smidt L (1975) An investigation of the centres of pressure under the foot while walking. J Bone Joint Surg Br 57:98–103Google Scholar
  56. Guess TM (2012) Forward dynamics simulation using a natural knee with menisci in the multibody framework. Multibody Syst Dyn 28:37–53. doi:10.1007/s11044-011-9293-4CrossRefGoogle Scholar
  57. Guess TM, Liu H, Bhashyam S, Thiagarajan G (2013) A multibody knee model with discrete cartilage prediction of tibio-femoral contact mechanics. Comput Methods Biomech Biomed Engin 16:256–270. doi:10.1080/10255842.2011.617004CrossRefGoogle Scholar
  58. Guess TM, Stylianou AP, Kia M (2014) Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait. J Biomech Eng 136:21032. doi:10.1115/1.4026359CrossRefGoogle Scholar
  59. Guess TM, Thiagarajan G, Kia M, Mishra M (2010) A subject specific multibody model of the knee with menisci. Med Eng Phys 32:505–515. doi:10.1016/j.medengphy.2010.02.020CrossRefGoogle Scholar
  60. Halonen KS, Mononen ME, Jurvelin JS, Töyräs J, Klodowski A, Kulmala J-P, Korhonen RK (2016) Importance of patella, quadriceps forces, and depthwise cartilage structure on knee joint motion and cartilage response during gait. J Biomech Eng 138(7):71002. https://doi.org/10.1115/1.4033516CrossRefGoogle Scholar
  61. Halloran JP, Easley SK, Petrella AJ, Rullkoetter PJ (2005) Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics. J Biomech Eng 127:813–818. doi:10.1115/1.1992522CrossRefGoogle Scholar
  62. Halloran JP, Erdemir A, van den Bogert AJ (2009) Adaptive surrogate modeling for efficient coupling of musculoskeletal control and tissue deformation models. J Biomech Eng 131:11014. doi:10.1115/1.3005333CrossRefGoogle Scholar
  63. Halloran JP, Sibole S, van Donkelaar CC et al (2012) Multiscale mechanics of articular cartilage: potentials and challenges of coupling musculoskeletal, joint, and microscale computational models. Ann Biomed Eng 40:2456–2474. doi:10.1007/s10439-012-0598-0CrossRefGoogle Scholar
  64. Halonen KS, Mononen ME, Jurvelin JS et al (2013) Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage-a 3D finite element study of stresses and strains in human knee joint. J Biomech 46:1184–1192. doi:10.1016/j.jbiomech.2012.12.025CrossRefGoogle Scholar
  65. Hamner SR, Seth A, Delp SL (2010) Muscle contributions to propulsion and support during running. J Biomech 43:2709–2716CrossRefGoogle Scholar
  66. Happee R, Van der Helm FCT (1995) The control of shoulder muscles during goal directed movements, an inverse dynamic analysis. J Biomech 28:1179–1191. doi:10.1016/0021-9290(94)00181-3CrossRefGoogle Scholar
  67. Hardt DE (1978) Determining muscle forces in the leg during normal human walking - an application and evaluation of optimization methods. J Biomech Eng 100:72–78CrossRefGoogle Scholar
  68. Hast MW, Piazza SJ (2013) Dual-joint modeling for estimation of total knee replacement contact forces during locomotion. J Biomech Eng 135:21013. doi:10.1115/1.4023320CrossRefGoogle Scholar
  69. Hausselle J, Assi A, El Helou A et al (2012) Subject-specific musculoskeletal model of the lower limb in a lying and standing position. Comput Methods Biomech Biomed Engin 17:37–41. doi:10.1080/10255842.2012.693173Google Scholar
  70. Heller MO, Bergmann G, Deuretzbacher G et al (2001) Musculo-skeletal loading conditions at the hip during walking and stair climbing. J Biomech 34:883–893. doi:10.1016/S0021-9290(01)00039-2CrossRefGoogle Scholar
  71. Herzog W, Longino D (2007) The role of muscles in joint degeneration and osteoarthritis. J Biomech 40(Suppl 1):S54–S63. doi:10.1016/j.jbiomech.2007.03.001CrossRefGoogle Scholar
  72. Hicks JL, Uchida TK, Seth A, Rajagopal A, Delp S (2015) Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of human movement. J Biomech Eng 137(February):20905. https://doi.org/10.1115/1.4029304CrossRefGoogle Scholar
  73. Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc B Biol Sci 126:136–195. doi:10.1098/rspb.1938.0050CrossRefGoogle Scholar
  74. Hodge WA, Fijan RS, Carlson KL et al (1986) Contact pressures in the human hip joint measured in vivo. Proc Natl Acad Sci USA 83:2879–2883. doi:10.1073/pnas.83.9.2879CrossRefGoogle Scholar
  75. Hollars MG, Rosenthal DE, Sherman MA (1994) SD/FAST user’s manual, Ver. B.2. Symbolic Dynamics, Mountain ViewGoogle Scholar
  76. Houck J, Yack HJ (2003) Associations of knee angles, moments and function among subjects that are healthy and anterior cruciate ligament deficient (ACLD) during straight ahead and crossover cutting activities. Gait Posture 18:126–138. doi:10.1016/S0966-6362(02)00188-1CrossRefGoogle Scholar
  77. Ignasiak D, Dendorfer S, Ferguson SJ (2016) Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading. J Biomech 49:959–966. doi:10.1016/j.jbiomech.2015.10.010CrossRefGoogle Scholar
  78. Isaac DL, Beard DJ, Price AJ et al (2005) In-vivo sagittal plane knee kinematics: ACL intact, deficient and reconstructed knees. Knee 12:25–31. doi:10.1016/j.knee.2004.01.002CrossRefGoogle Scholar
  79. Jinha A, Ait-Haddou R, Herzog W (2006) Predictions of co-contraction depend critically on degrees-of-freedom in the musculoskeletal model. J Biomech 39:1145–1152. doi:10.1016/j.jbiomech.2005.03.001CrossRefGoogle Scholar
  80. Kainz H, Modenese L, Lloyd DG et al (2016) Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models. J Biomech 49:1658–1669. doi:10.1016/j.jbiomech.2016.03.052CrossRefGoogle Scholar
  81. Kaiser J, Bradford R, Johnson K et al (2013) Measurement of tibiofemoral kinematics using highly accelerated 3D radial sampling. Magn Reson Med 69:1310–1316. doi:10.1002/mrm.24362CrossRefGoogle Scholar
  82. Katz JW, Fingeroth RJ (1986) The diagnostic accuracy of ruptures of the anterior cruciate ligament comparing the Lachman test, the anterior drawer sign, and the pivot shift test in acute and chronic knee injuries. Am J Sports Med 14:88–91. doi:10.1177/036354658601400115CrossRefGoogle Scholar
  83. Kazemi M, Dabiri Y, Li LP (2013) Recent advances in computational mechanics of the human knee joint. Comput Math Methods Med 2013:718423. doi:10.1155/2013/718423MathSciNetCrossRefGoogle Scholar
  84. Kim S (1998a) Muscle-ligament interactions at the human knee (I) – maximum isometric leg exercises. KSME Int J 12:1079–1089CrossRefGoogle Scholar
  85. Kim S (1998b) Three-dimensional dynamic model of the knee. KSME Int J 12:1041–1063CrossRefGoogle Scholar
  86. Klein Horsman MD (2007) The Twente lower extremity model: consistent dynamic simulation of the human locomotor apparatus, University of TwenteGoogle Scholar
  87. Kłodowski A, Mononen ME, Kulmala JP et al (2016) Merge of motion analysis, multibody dynamics and finite element method for the subject-specific analysis of cartilage loading patterns during gait: differences between rotation and moment-driven models of human knee joint. Multibody Syst Dyn 37:271–290. doi:10.1007/s11044-015-9470-yCrossRefGoogle Scholar
  88. Koo S, Rylander JH, Andriacchi TP (2011) Knee joint kinematics during walking influences the spatial cartilage thickness distribution in the knee. J Biomech 44:1405–1409. doi:10.1016/j.jbiomech.2010.11.020CrossRefGoogle Scholar
  89. Koolstra JH, Van Eijden TMGJ (2005) Combined finite-element and rigid-body analysis of human jaw joint dynamics. J Biomech 38:2431–2439. doi:10.1016/j.jbiomech.2004.10.014CrossRefGoogle Scholar
  90. Kutzner I, Heinlein B, Graichen F et al (2010) Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech 43:2164–2173CrossRefGoogle Scholar
  91. Leardini A, Chiari L, Della CU, Cappozzo A (2005) Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait Posture 21:212–225CrossRefGoogle Scholar
  92. Lee L, Umberger BR (2016) Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB. Peer J 4:e1638. doi:10.7717/peerj.1638CrossRefGoogle Scholar
  93. Lenhart RL, Brandon SCE, Smith CR et al (2016) Influence of patellar position on the knee extensor mechanism in normal and crouched walking. J Biomech. doi:10.1016/j.jbiomech.2016.11.052Google Scholar
  94. Lenhart RL, Kaiser J, Smith CR, Thelen DG (2015a) Prediction and validation of load-dependent behavior of the tibiofemoral and patellofemoral joints during movement. Ann Biomed Eng 43:2675–2685. doi:10.1007/s10439-015-1326-3CrossRefGoogle Scholar
  95. Lenhart RL, Smith CR, Vignos MF et al (2015b) Influence of step rate and quadriceps load distribution on patellofemoral cartilage contact pressures during running. J Biomech 48:2871–2878. doi:10.1016/j.jbiomech.2015.04.036CrossRefGoogle Scholar
  96. Li G, Defrate LE, Rubash HE, Gill TJ (2005) In vivo kinematics of the ACL during weight-bearing knee flexion. J Orthop Res 23:340–344. doi:10.1016/j.orthres.2004.08.006CrossRefGoogle Scholar
  97. Li K, Zheng L, Tashman S, Zhang X (2012) The inaccuracy of surface-measured model-derived tibiofemoral kinematics. J Biomech 45:2719–2723. doi:10.1016/j.jbiomech.2012.08.007CrossRefGoogle Scholar
  98. Lin Y-C, Farr J, Carter K, Fregly BJ (2006) Response surface optimization for joint contact model evaluation. J Appl Biomech 22:120–130CrossRefGoogle Scholar
  99. Lin Y-C, Haftka RT, Queipo NV, Fregly BJ (2010a) Surrogate articular contact models for computationally efficient multibody dynamic simulations. Med Eng Phys 32:584–594. doi:10.1016/j.medengphy.2010.02.008CrossRefGoogle Scholar
  100. Lin YC, Walter JP, Banks SA et al (2010b) Simultaneous prediction of muscle and contact forces in the knee during gait. J Biomech 43:945–952. doi:10.1016/j.jbiomech.2009.10.048CrossRefGoogle Scholar
  101. Lloyd DG, Besier TF (2003) An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J Biomech 36:765–776CrossRefGoogle Scholar
  102. Lloyd JE, Stavness I, Fels S (2012) ArtiSynth: a fast interactive biomechanical modeling toolkit combining multibody and finite element simulation. In: Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, Springer-Verlag Berlin Heidelberg. pp 355–394. doi:10.1007/8415_2012_126Google Scholar
  103. Logan MC (2004) Tibiofemoral kinematics following successful anterior cruciate ligament reconstruction using dynamic multiple resonance imaging. Am J Sports Med 32:984–992. doi:10.1177/0363546503261702CrossRefGoogle Scholar
  104. Lu T-W, O’Connor JJ (1999) Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J Biomech 32:129–134. doi:10.1016/S0021-9290(98)00158-4CrossRefGoogle Scholar
  105. Marouane H, Shirazi-Adl A, Adouni M (2016) 3D active-passive response of human knee joint in gait is markedly altered when simulated as a planar 2D joint. Biomech Model Mechanobiol. doi:10.1007/s10237-016-0846-6Google Scholar
  106. Marra MA, Vanheule V, Fluit R, Koopman BH, Rasmussen J, Verdonschot N, Andersen MS (2015) A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty. J Biomech Eng 137(2):20904. https://doi.org/10.1115/1.4029258CrossRefGoogle Scholar
  107. Marra MA, Vanheule V, Rasmussen J et al (2015) A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of Total knee arthroplasty. J Biomech Eng 137:20904. doi:10.1115/1.4029258CrossRefGoogle Scholar
  108. Millard M, Uchida T, Seth A, Delp SL (2013) Flexing computational muscle: modeling and simulation of musculotendon dynamics. J Biomech Eng 135:21005. doi:10.1115/1.4023390CrossRefGoogle Scholar
  109. Miranda DL, Fadale PD, Hulstyn MJ et al (2013) Knee biomechanics during a jump-cut maneuver: effects of sex and ACL surgery. Med Sci Sports Exerc 45:942–951. doi:10.1249/MSS.0b013e31827bf0e4CrossRefGoogle Scholar
  110. Miyazaki T, Wada M, Kawahara H et al (2002) Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann Rheum Dis 61:617–622CrossRefGoogle Scholar
  111. Modenese L, Phillips ATM, Bull AMJ (2010) A state of the art 3D model of the lower limb: application to muscle force estimation and validation. (WCB 2010) Aug 1–6, 2010. pp 981–984Google Scholar
  112. Morrison JB (1970) The mechanics of the knee joint in relation to normal walking. J Biomech 3:51–61. doi:10.1016/0021-9290(70)90050-3CrossRefGoogle Scholar
  113. Nissi MJ, Rieppo J, Töyräs J et al (2007) Estimation of mechanical properties of articular cartilage with MRI - dGEMRIC, T2 and T1 imaging in different species with variable stages of maturation. Osteoarthr Cartil 15:1141–1148. doi:10.1016/j.joca.2007.03.018CrossRefGoogle Scholar
  114. Ota K, Shinya M, Kudo K (2016) Sub-optimality in motor planning is retained throughout 9 days practice of 2250 trials. Sci Rep 6:37181. doi:10.1038/srep37181CrossRefGoogle Scholar
  115. Pandy MG, Sasaki K, Kim S (1998a) A three-dimensional musculoskeletal model of the human knee joint. Part 1: Theoretical construct. Comput Biomech Biomed Engin 1:87–108. doi:10.1080/01495739708936697CrossRefGoogle Scholar
  116. Pandy MG, Sasaki K, Taylor P et al (1998b) A three-dimensional musculoskeletal model of the human knee joint. Part 2: Analysis of ligament function. Comput Methods Biomech Biomed Engin 1:265–283. doi:10.1080/01495739808936707CrossRefGoogle Scholar
  117. Papaioannou G, Demetropoulos CK, King YH (2010) Predicting the effects of knee focal articular surface injury with a patient-specific finite element model. Knee 17:61–68. doi:10.1016/j.knee.2009.05.001CrossRefGoogle Scholar
  118. Pauwels F (1935) Der schenkelhalsbruch em mechanisches problem: Grundlagen des Heilungsvorganges Prognose und kausale Therapie. Stuttgart Ferdinand Enke Verlag. doi:10.1590/1413Google Scholar
  119. Pedotti A, Krishnan VV, Stark L (1978) Optimization of muscle-force sequencing in human locomotion. Math Biosci 38:57–76. doi:10.1016/0025-5564(78)90018-4CrossRefGoogle Scholar
  120. Peña E, Martínez MA, Calvo B et al (2005) A finite element simulation of the effect of graft stiffness and graft tensioning in ACL reconstruction. Clin Biomech 20:636–644. doi:10.1016/j.clinbiomech.2004.07.014CrossRefGoogle Scholar
  121. Piazza SJ, Delp SL (2001) Three-dimensional dynamic simulation of total knee replacement motion during a step-up task. J Biomech Eng 123:599–606. doi:10.1115/1.1406950CrossRefGoogle Scholar
  122. Rajagopal A, Dembia CL, DeMers MS et al (2016) Full-body musculoskeletal model for muscle-driven simulation of human gait. IEEE Trans Biomed Eng 63:2068–2079. doi:10.1109/TBME.2016.2586891CrossRefGoogle Scholar
  123. Ravary B, Pourcelot P, Bortolussi C et al (2004) Strain and force transducers used in human and veterinary tendon and ligament biomechanical studies. Clin Biomech 19:433–447. doi:10.1016/j.clinbiomech.2004.01.008CrossRefGoogle Scholar
  124. Rikli DA, Honigmann P, Babst R et al (2007) Intra-articular pressure measurement in the radioulnocarpal joint using a novel sensor: in vitro and in vivo results. J Hand Surg Am 32:67–75. doi:10.1016/j.jhsa.2006.10.007CrossRefGoogle Scholar
  125. Roberts CS, Cumming JF, Grood ES, Noyes FR (1994) In vivo measurement of human anterior cruciate ligament forces during knee extension exercises. In: Transactions of the 40th Orthopaedic Research Society, New Orleans, pp 15–84Google Scholar
  126. Rydell NW (1966) Forces acting on the femoral head-prosthesis: a study on strain gauge supplied prostheses in living persons. Acta Orthop Scand 37:1–132. doi:10.3109/ort.1966.37.suppl-88.01CrossRefGoogle Scholar
  127. Sanders TL, Maradit Kremers H, Bryan AJ et al (2016) Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am J Sports Med 44:1502–1507. doi:10.1177/0363546516629944CrossRefGoogle Scholar
  128. Sartori M, Gizzi L, Lloyd DG, Farina D (2013) A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives. Front Comput Neurosci 7:79. doi:10.3389/fncom.2013.00079CrossRefGoogle Scholar
  129. Scheys L, Jonkers I, Schutyser F et al (2005) Image based methods to generate subject-specific musculoskeletal models for gait analysis. Int Congr Ser 1281:62–67. doi:10.1016/j.ics.2005.03.076CrossRefGoogle Scholar
  130. Scheys L, Spaepen A, Suetens P, Jonkers I (2008) Calculated moment-arm and muscle-tendon lengths during gait differ substantially using MR based versus rescaled generic lower-limb musculoskeletal models. Gait Posture 28:640–648. doi:10.1016/j.gaitpost.2008.04.010CrossRefGoogle Scholar
  131. Schipplein OD, Andriacchi TP (1991) Interaction between active and passive knee stabilizers during level walking. J Orthop Res 9:113–119. doi:10.1002/jor.1100090114CrossRefGoogle Scholar
  132. Seireg A, Arvikar RJ (1975) The prediction of musclular load sharing and joint forces in lower extremities during walking. J Biomech 8:89–102CrossRefGoogle Scholar
  133. Seth A, Matias R, Veloso AP, Delp SL (2016) A biomechanical model of the Scapulothoracic joint to accurately capture scapular kinematics during shoulder movements. PLoS One 11:e0141028. doi:10.1371/journal.pone.0141028CrossRefGoogle Scholar
  134. Seth A, Pandy MG (2007) A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement. J Biomech 40:356–366. doi:10.1016/j.jbiomech.2005.12.017CrossRefGoogle Scholar
  135. Shelburne KB, Pandy MG, Anderson FC, Torry MR (2004) Pattern of anterior cruciate ligament force in normal walking. J Biomech 37:797–805CrossRefGoogle Scholar
  136. Shelburne KB, Torry MR, Pandy MG (2006) Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J Orthop Res 24:1983–1990CrossRefGoogle Scholar
  137. Shelburne KB, Torry MR, Pandy MG (2005) Muscle, ligament, and joint-contact forces at the knee during walking. Med Sci Sports Exerc 37:1948–1956. doi:10.1249/01.mss.0000180404.86078.ffCrossRefGoogle Scholar
  138. Sherman MA, Seth A, Delp SL (2011) SIMBODY: multibody dynamics for biomedical research. Procedia IUTAM 2:241–261CrossRefGoogle Scholar
  139. Shin CS, Chaudhari AM, Andriacchi TP (2009) The effect of isolated valgus moments on ACL strain during single-leg landing: a simulation study. J Biomech 42:280–285. doi:10.1016/j.jbiomech.2008.10.031CrossRefGoogle Scholar
  140. Shin CS, Chaudhari AM, Andriacchi TP (2011) Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone. Med Sci Sports Exerc 43:1484–1491. doi:10.1249/MSS.0b013e31820f8395CrossRefGoogle Scholar
  141. Shin CS, Chaudhari AM, Andriacchi TP (2007) The influence of deceleration forces on ACL strain during single-leg landing: a simulation study. J Biomech 40:1145–1152. doi:10.1016/j.jbiomech.2006.05.004CrossRefGoogle Scholar
  142. Sins L, Tétreault P, Hagemeister N, Nuño N (2015) Adaptation of the AnyBody™ musculoskeletal shoulder model to the nonconforming Total shoulder arthroplasty context. J Biomech Eng 137:101006. doi:10.1115/1.4031330CrossRefGoogle Scholar
  143. Smith CR, Lenhart RL, Kaiser J et al (2016a) Influence of ligament properties on tibiofemoral mechanics in walking. J Knee Surg 29:99–106. doi:10.1055/s-0035-1558858CrossRefGoogle Scholar
  144. Smith CR, Vignos MF, Lenhart RL et al (2016b) The influence of component alignment and ligament properties on tibiofemoral contact forces in Total knee replacement. J Biomech Eng 138:21017. doi:10.1115/1.4032464CrossRefGoogle Scholar
  145. Smith CR, Won Choi K, Negrut D, Thelen DG (2016c) Efficient computation of cartilage contact pressures within dynamic simulations of movement. Comput Methods Biomech Biomed Eng Imaging Vis 1–8. doi: 10.1080/21681163.2016.1172346Google Scholar
  146. Stylianou AP, Guess TM, Kia M (2013) Multibody muscle driven model of an instrumented prosthetic knee during squat and toe rise motions. J Biomech Eng 135:41008. doi:10.1115/1.4023982CrossRefGoogle Scholar
  147. Tanska P, Mononen ME, Korhonen RK (2015) A multi-scale finite element model for investigation of chondrocyte mechanics in normal and medial meniscectomy human knee joint during walking. J Biomech 48:1397–1406. doi:10.1016/j.jbiomech.2015.02.043CrossRefGoogle Scholar
  148. Thelen DG (2003) Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J Biomech Eng 125:70. doi:10.1115/1.1531112CrossRefGoogle Scholar
  149. Thelen DG, Anderson FC (2006) Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J Biomech 39:1107–1115CrossRefGoogle Scholar
  150. Thelen DG, Anderson FC, Delp SL (2003) Generating dynamic simulations of movement using computed muscle control. J Biomech 36:321–328CrossRefGoogle Scholar
  151. Thelen DG, Smith CR (2016) Webinar: enabling stochastic simulations of movement with high throughput computing. Natl Cent Simul Rehabil Res. http://opensim.stanford.edu/support/event_details.html?id=169. Accessed 13 Dec 2016
  152. Thelen DG, Won Choi K, Schmitz AM (2014) Co-simulation of neuromuscular dynamics and knee mechanics during human walking. J Biomech Eng 136:21033. doi:10.1115/1.4026358CrossRefGoogle Scholar
  153. Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235. doi:10.1038/nn963CrossRefGoogle Scholar
  154. Torry MR, Decker MJ, Ellis HB et al (2004) Mechanisms of compensating for anterior cruciate ligament deficiency during gait. Med Sci Sports Exerc 36:1403–1412. doi:10.1249/01.MSS.0000135797.09291.71CrossRefGoogle Scholar
  155. Valente G, Pitto L, Testi D et al (2014) Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification? PLoS One 9:e112625. doi:10.1371/journal.pone.0112625CrossRefGoogle Scholar
  156. Van der Helm FC, Veeger HE, Pronk GM et al (1992) Geometry parameters for musculoskeletal modelling of the shoulder system. J Biomech 25:129–144CrossRefGoogle Scholar
  157. Walker PS, Rovick JS, Robertson DD (1988) The effects of knee brace hinge design and placement on joint mechanics. J Biomech 21:965–974. doi:10.1016/0021-9290(88)90135-2CrossRefGoogle Scholar
  158. Winby CR, Lloyd DG, Besier TF, Kirk TB (2009) Muscle and external load contribution to knee joint contact loads during normal gait. J Biomech 42:2294–2300CrossRefGoogle Scholar
  159. Winter DA, Scott SH (1991) Technique for interpretation of electromyography for concentric and eccentric contractions in gait. J Electromyogr Kinesiol 1:263–269CrossRefGoogle Scholar
  160. Wong C, Zhang ZQ, Lo B, Yang GZ (2015) Wearable sensing for solid biomechanics: a review. IEEE Sensors J 15:2747–2760. doi:10.1109/JSEN.2015.2393883CrossRefGoogle Scholar
  161. Wu G, Cavanagh PR (1995) ISB recommendations for standardization in the reporting of kinematic data. J Biomech 28:1257–1261CrossRefGoogle Scholar
  162. Wu G, Siegler S, Allard P et al (2002) ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech 35:543–548. doi:10.1016/S0021-9290(01)00222-6CrossRefGoogle Scholar
  163. Yamaguchi GT, Zajac FE (1989) A planar model of the knee joint to characterize the knee extensor mechanism. J Biomech 22:1–10. doi:10.1016/0021-9290(89)90179-6CrossRefGoogle Scholar
  164. You BM, Siy P, Anderst W, Tashman S (2001) In vivo measurement of 3-D skeletal kinematics from sequences of biplane radiographs: application to knee kinematics. IEEE Trans Med Imaging 20:514–525. doi:10.1109/42.929617CrossRefGoogle Scholar
  165. Zhang X, Chen Z, Wang L et al (2015) Prediction of hip joint load and translation using musculoskeletal modelling with force-dependent kinematics and experimental validation. Proc Inst Mech Eng H 229:477–490CrossRefGoogle Scholar
  166. Zheng M, Zou Z, Bartolo PJDS et al (2016) Finite element models of the human shoulder complex: a review of their clinical implications and modelling techniques. Int J Numer Method Biomed Eng 30:659–680. doi:10.1002/cnm.2777CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Scott C. E. Brandon
    • 1
  • Colin R. Smith
    • 1
  • Darryl G. Thelen
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations