Movement and Touch in Piano Performance

Living reference work entry


Pianists achieve extreme levels of virtuosity on their instrument, requiring a combination of talent and decade-long continuous and deliberate practice, training, and experience. As with all musical behaviors, body movements in piano performance are goal directed, aiming at producing intended sounds with utmost precision and accuracy in expressive parameters such as timing, dynamics, timbre, and articulation. Body movements in piano performance may also serve communicative purposes such as to express emotional states or to coordinate with co-performers. Pianists control the timing and velocities of the individual piano hammers by varying the forces applied to the piano key surfaces, as well as to the three pedals through their feet. The key forces are accomplished by coordinating the kinematic chain from their shoulders to the fingertips aligned with feet movements to manipulate the pedals. As kinematic properties such as finger velocity covary with performance parameters (tempo, dynamics, etc.), pianists have to stabilize several parameters of movement kinematics and musical expression simultaneously. The intrinsic way the fingers arrive at the piano key surface, referred to as piano touch (i.e., pressing versus striking a piano key), yields different tactile and other sensory percepts to the pianists themselves and the audiences alike, making this parameter an important one in accomplished piano performance.


Piano performance Motion capture Piano technique Piano touch Movement efficiency 



I want to thank Laura Bishop and Manfred Nusseck for invaluable comments on an earlier version of this chapter. This work has been supported by the Austrian Science Fund (FWF, projects P 24546, P 23248, and J 2526).


  1. Altenmüller E, Baur V, Hofmann A, Lim VK, Jabusch HC (2012) Musician’s cramp as manifestation of maladaptive brain plasticity: arguments from instrumental differences. Ann N Y Acad Sci 1252:259–265. doi:10.1111/j.1749-6632.2012.06456.xCrossRefGoogle Scholar
  2. Askenfelt A, Jansson EV (1990) From touch to string vibrations. In: Askenfelt A (ed) Five lectures on the acoustics of the piano, vol 64. Publications issued by the Royal Swedish Academy of Music, Stockholm, pp 39–57Google Scholar
  3. Bach CPE (1753) Versuch über die wahre Art, das Clavier zu spielen [An essay on the true art of playing keyboard instruments]. Henning, BerlinGoogle Scholar
  4. Behne KE, Wöllner C (2011) Seeing or hearing the pianists? A synopsis of an early audiovisual perception experiment and a replication. Music Sci 15(3):324–342. doi:10.1177/1029864911410955Google Scholar
  5. Bernays M, Traube C (2014) Investigating pianists’ individuality in the performance of five timbral nuances through patterns of articulation, touch, dynamics, and pedaling. Front Psychol Cogn Sci 5(157):1–19. doi:10.3389/fpsyg.2014.00157Google Scholar
  6. Bernstein NA (1967) The coordination and regulation of movements. Pergamon Press, OxfordGoogle Scholar
  7. Bernstein NA, Popova TS (1929) Untersuchung über die Biodynamik des Klavieranschlags [Study of the biodynamics of piano touch]. Arbeitsphysiologie 1(5):396–432. doi:10.1007/BF02012845Google Scholar
  8. Binet A, Courtier J (1895) Recherches graphiques sur la musique [Graphical research into music] L’Anne’e Psychologique 2:201–222, available also in a German translation by Schmitz H-W (1994) Das Mechanische Musikinstrument 61: 16–24Google Scholar
  9. Bishop L, Goebl W (2016) Music and movement: musical instruments and performers. In: Ashley R, Timmers R (eds) Routledge companion to music cognition. Taylor and Francis, London, to appearGoogle Scholar
  10. Breithaupt RM (1905) Die natürliche Klaviertechnik [The natural piano technique], 2nd edn. C. F. Kahnt, LeipzigGoogle Scholar
  11. Brendel A (2013) A pianist’s A–Z. Faber and Faber, LondonGoogle Scholar
  12. Bryan GH (1913) Pianoforte touch. Nature 91(2271):246–248. doi:10.1038/091246a0CrossRefGoogle Scholar
  13. Chung IS, Ryu J, Ohnishi N, Rowen B, Headrich J (1992) Wrist motion analysis in pianists. Med Probl Performing Artists 7(1):1–5Google Scholar
  14. Corazza S, Mündermann L, Chaudhari AM, Demattio T, Cobelli C, Andriacchi TP (2006) A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach. Ann Biomed Eng 34(6):1019–1029. doi:10.1007/s10439-006-9122-8CrossRefGoogle Scholar
  15. Couperin F (1716) L’art de toucher le clevcin [the art of playing the harpsichord]. Che’s l’Auteur, le Sieur Foucaut, ParisGoogle Scholar
  16. Dahl S, Bevilacqua F, Bresin R, Clayton M, Leante L, Poggi I, Rasamimanana N (2010) Gestures in performance. In: Godøy RI, Leman M (eds) Musical gestures: sound, movement, and meaning. Routledge, New York, pp 36–68Google Scholar
  17. Dalla Bella S, Palmer C (2011) Rate effects on timing, key velocity, and finger kinematics in piano performance. PLoS One 6(6):e20,518. doi:10.1371/journal.pone.0020518CrossRefGoogle Scholar
  18. Engel KC, Flanders M, Soechting JF (1997) Anticipatory and sequential motor control in piano playing. Exp Brain Res 113(2):189–199. doi:10.1007/BF02450317CrossRefGoogle Scholar
  19. Ferrario VM, Macrì C, Biffi E, Pollice P, Sforza C (2007) Three-dimensional analysis of hand and finger movements during piano playing. Med Probl Performing Artists 22(1):18–23Google Scholar
  20. Fletcher NH, Rossing TD (1998) The physics of musical instruments, 2nd edn. Springer, New YorkCrossRefzbMATHGoogle Scholar
  21. Flossmann S, Goebl W, Grachten M, Niedermayer B, Widmer G (2010) The magaloff project: an interim report. J New Music Res 39(4):363–377. doi:10.1080/09298215.2010.523469CrossRefGoogle Scholar
  22. Fowler CA, Saltzman E (1993) Coordination and coarticulation in speech production. Lang Speech 36(Pt. 2–3):171–195Google Scholar
  23. Furuya S, Altenmüller E (2013) Flexibility of movement organization in piano performance. Front Hum Neurosci 7(173):1–10. doi:10.3389/fnhum.2013.00173Google Scholar
  24. Furuya S, Kinoshita H (2008) Expertise-dependent modulation of muscular and non-muscular torques in multi-joint arm movements during piano keystroke. Neuroscience 156(2):390–402CrossRefGoogle Scholar
  25. Furuya S, Soechting JF (2012) Speed invariance of independent control of finger movements in pianists. J Neurophysiol 108(7):2060–2068Google Scholar
  26. Furuya S, Osu R, Kinoshita H (2009) Effective utilization of gravity during arm downswing in keystrokes by expert pianists. Neuroscience 164(2):822–831. doi:10.1016/j.neuroscience.2009.08.024CrossRefGoogle Scholar
  27. Furuya S, Altenmüller E, Katayose H, Kinoshita H (2010) Control of multi-joint arm movements for the manipulation of touch in keystroke by expert pianists. BMC Neurosci 11:82–96. doi:10.1186/1471-2202-11-82CrossRefGoogle Scholar
  28. Furuya S, Flanders M, Soechting JF (2011a) Hand kinematics of piano playing. J Neurophysiol 106:2849–2864CrossRefGoogle Scholar
  29. Furuya S, Goda T, Katayose H, Miwa H, Nagata N (2011b) Distinct inter-joint coordination during fast alternate keystrokes in pianists with superior skill. Front Hum Neurosci 5(50):1–13. doi:10.3389/fnhum.2011.00050Google Scholar
  30. Furuya S, Tominaga K, Miyazaki F, Altenmüller E (2015) Losing dexterity: patterns of impaired coordination of finger movements in musician’s dystonia. Sci Rep 5(13360). doi:10.1038/srep13360Google Scholar
  31. Gabrielsson A (2003) Music performance research at the millennium. Psychol Music 31(3):221–272. doi:10.1177/03057356030313002CrossRefGoogle Scholar
  32. Gat J (1965) The technique of piano playing, 3rd edn. Corvina, BudapestGoogle Scholar
  33. Gerig RR (1974) Famous pianists and their technique. Robert B, LuceGoogle Scholar
  34. Goebl W, Bresin R (2003) Measurement and reproduction accuracy of computer-controlled grand pianos. J Acoust Soc Am 114(4):2273–2283. doi:10.1121/1.1605387CrossRefGoogle Scholar
  35. Goebl W, Palmer C (2006) Anticipatory motion in piano performance. J Acoust Soc Am 120(5):3002CrossRefGoogle Scholar
  36. Goebl W, Palmer C (2008) Tactile feedback and timing accuracy in piano performance. Exp Brain Res 186(3):471–479. doi:10.1007/s00221-007-1252-1CrossRefGoogle Scholar
  37. Goebl W, Palmer C (2009a) Finger motion in piano performance: touch and tempo. In: Williamon A, Pretty S, Buck R (eds) Proceedings of the International Symposium on Performance Science 2009 (15–18 December 2009). European Association of Conservatoires, Auckland, pp 65–70Google Scholar
  38. Goebl W, Palmer C (2009b) Synchronization of timing and motion among performing musicians. Music Percept 26(5):427–438. doi:10.1525/mp.2009.26.5.427CrossRefGoogle Scholar
  39. Goebl W, Palmer C (2013) Temporal control and hand movement efficiency in skilled music performance. PLoS One 8(1):e50,901. doi:10.1371/journal.pone.0050901CrossRefGoogle Scholar
  40. Goebl W, Bresin R, Galembo A (2005) Touch and temporal behavior of grand piano actions. J Acoust Soc Am 118(2):1154–1165. doi:10.1121/1.1944648CrossRefGoogle Scholar
  41. Goebl W, Dixon S, De Poli G, Friberg A, Bresin R, Widmer G (2008) ‘Sense’ in expressive music performance: data acquisition, computational studies, and models. In: Polotti P, Rocchesso D (eds) Sound to sense – sense to sound: a state of the art in sound and music computing. Logos, Berlin, pp 195–242Google Scholar
  42. Goebl W, Bresin R, Fujinaga I (2014a) Perception of touch quality in piano tones. J Acoust Soc Am 136(5):2839–2850. doi:10.1121/1.4896461CrossRefGoogle Scholar
  43. Goebl W, Dixon S, Schubert E (2014b) Quantitative methods: motion analysis, audio analysis, and continuous response techniques. In: Fabian D, Timmers R, Schubert E (eds) Expressiveness in music performance – empirical approaches across styles and cultures. Oxford University Press, Oxford, UK, pp 221–239Google Scholar
  44. Hadjakos A (2012) Pianist motion capture with the kinect depth camera. In: Proceedings of the 9th sound and music computing conference. Aalborg University – Copenhagen, Copenhagen, pp 303–310Google Scholar
  45. Hadjakos A, Aitenbichler E, Mühlhäuser M (2008) Syssomo: a pedagogical tool for analyzing movement variants between different pianists. In: Proceedings of 5th International Conference on Enactive Interfaces, Scuola Universitaria Superiore Sant’Anna, PisaGoogle Scholar
  46. Häger-Ross C, Schieber MH (2000) Quantifying the independence of human finger movements: comparisons of digits, hands, and movement frequencies. J Neurosci 20(22):8542–8550Google Scholar
  47. Hagmann P (1984) Das Welte-Mignon-Klavier, die Welte-Philharmonie-Orgel und die Anfänge der Reproduktion von Musik. Europäische Hochschulschriften: Reihe 35, Musikwissenschaft, Bd. 10, Peter Lang, Bern, available at
  48. Jabusch HC, Vauth H, Altenmüller E (2004) Quantification of focal dystonia in pianists using scale analysis. Mov Disord 19(2):171–180CrossRefGoogle Scholar
  49. Jerde TE, Soechting JF, Flanders M (2003) Coarticulation in fluent fingerspelling. J Neurosci 23(6):2383–2393Google Scholar
  50. Kay BA, Turvey MT, Meijer OG (2003) An early oscillator model: studies on the biodynamics of the piano strike (Bernstein & Popova, 1930). Mot Control 7(1):1–45CrossRefGoogle Scholar
  51. Kinoshita H, Furuya S, Aoki T, Altenmüller E (2007) Loudness control in pianists as exemplified in keystroke force measurements on different touches. J Acoust Soc Am 121(5):2959–2969. doi:10.1121/1.2717493CrossRefGoogle Scholar
  52. Konczak J, Abbruzzese G (2013) Focal dystonia in musicians: linking motor symptoms to somatosensory dysfunction. Front Hum Neurosci 7(297):1–10. doi:10.3389/fnhum.2013.00297Google Scholar
  53. Krampe RT, Ericsson KA (1996) Maintaining excellence: deliberate practice and elite performance in young and older pianists. J Exp Psychol Gen 125(4):331–359CrossRefGoogle Scholar
  54. Loehr JD, Palmer C (2007) Cognitive and biomechanical influences in pianists’ finger tapping. Exp Brain Res 178(4):518–528CrossRefGoogle Scholar
  55. MacRitchie J (2015) The art and science behind piano touch: a review connecting multi-disciplinary literature. Music Sci 19(2):171–190. doi:10.1177/1029864915572813Google Scholar
  56. MacRitchie J, Bailey NJ (2013) Efficient tracking of pianists’ finger movements. J New Music Res 42(1):79–95. doi:10.1080/09298215.2012.762529CrossRefGoogle Scholar
  57. MacRitchie J, McPherson AP (2015) Integrating optical finger motion tracking with surface touch events. Front Psychol Perform Sci 6(702):1–14. doi:10.3389/fpsyg.2015.00702Google Scholar
  58. Matthay T (1903) The act of touch in all its diversity. An analysis and synthesis of pianoforte tone production. Bosworth & Co. Ltd., London. Google Scholar
  59. McPherson AP (2012) Touchkeys: capacitive multi-touch sensing on a physical keyboard. In: Essl G, Gillespie B, Gurevich M, O’Modhrain S (eds) Proceedings of the International Conference on New Interfaces for Musical Expression (NIME). University of Michigan, Ann ArborGoogle Scholar
  60. McPherson AP, Kim YE (2011) Multidimensional gesture sensing at the piano keyboard. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, Vancouver, pp 2789–2798. doi:10.1145/1978942.1979355Google Scholar
  61. Metcalf CD, Irvine TA, Sims JL, Wang YL, Su AWY, Norris DO (2014) Complex hand dexterity: a review of biomechanical methods for measuring musical performance. Front Psychol Cogn Sci 5(414):1–12. doi:10.3389/fpsyg.2014.00414Google Scholar
  62. Neuhaus H (1973) The art of piano playing. Barrie & Jenkins, LondonGoogle Scholar
  63. Ortmann O (1925) The physical basis of piano touch and tone. Kegan Paul, Trench, Trubner/J. Curwen/E. P. Dutton, London/New YorkGoogle Scholar
  64. Ortmann O (1929) The physiological mechanics of piano technique. Kegan Paul, Trench, Trubner, E. P. Dutton, London/New York. paperback reprint: E. P. Dutton, New York, 1962Google Scholar
  65. Palmer C (1997) Music performance. Annu Rev Psychol 48:115–138. doi:10.1146/annurev.psych.48.1.115CrossRefGoogle Scholar
  66. Parlitz D, Peschel T, Altenmüller E (1998) Assessment of dynamic finger forces in pianists: effects of training and expertise. J Biomech 31(11):1063–1067CrossRefGoogle Scholar
  67. Phillips-Silver J (2009) On the meaning of movement in music, development and the brain. Contemp Music Rev 28(3):293–314CrossRefGoogle Scholar
  68. Rahman MM, Mitobe K, Suzuki M, Takano C, Yoshimura N (2011) Analysis of dexterous finger movement for piano education using motion capture system. Int J Sci Technol Educ Res 2(2):22–31. Google Scholar
  69. Rainbow B (1990) Johann Bernhard Logier and the chiroplast controversy. Music Times 131(1766):193–196. CrossRefGoogle Scholar
  70. Sakai N (1992) Hand pain related to keyboard techniques in pianists. Med Probl Performing Artists 7(2):63–65Google Scholar
  71. Song MH, Godøy RI (2016) How fast is your body motion? Determining a sufficient frame rate for an optical motion tracking system using passive markers. PLoS One 11(3):e0150,993. doi:10.1371/journal.pone.0150993CrossRefGoogle Scholar
  72. Stewart L, Verdonschot RG, Nasralla P, Lanipekun J (2013) Action–perception coupling in pianists: learned mappings or spatial musical association of response codes (smarc) effect? Q J Exp Psychol 66(1):37–50, doi:10.1080/17470218.2012.687385Google Scholar
  73. Tits M, Tilmanne J, d’Allesandro N, Wanderley MM (2015) Feature extraction and expertise analysis of pianists’ motion-capture finger gestures. In: Proceedings of the 2015 International Computer Music Conference, International Computer Music Association, pp 102–105,
  74. Tro J (2000) Aspects of control and perception. In: Rocchesso D, Signoretto M (eds) Proceedings of the COST–G6 Conference on Digital Audio Effects (DAFX–00), December 7–9, 2000, Universita` degli Studi di Verona. Dipartimento Scientifico e Tecnologico, Verona, pp 171–176Google Scholar
  75. Tsay CJ (2013) Sight over sound in the judgment of music performance. Proc Natl Acad Sci 110(36):14,580–14,585. doi:10.1073/pnas.1221454110Google Scholar
  76. White WB (1930) The human element in piano tone production. J Acoust Soc Am 1:357–367. doi:10.1121/1.1915190CrossRefGoogle Scholar
  77. Widmer G, Goebl W (2004) Computational models of expressive music performance: the state of the art. J New Music Res 33(3):203–216. doi:10.1080/0929821042000317804CrossRefGoogle Scholar
  78. Winges SA, Furuya S (2014) Distinct digit kinematics by professional and amateur pianists. Neuroscience 284:643–652CrossRefGoogle Scholar
  79. Wulf G, Mornell A (2008) Insights about practice from the perspective of motor learning: a review. Music Perform Res 2:1–25Google Scholar
  80. Zatsiorsky VM, Li ZM, Latash ML (2000) Enslaving effects in multi-finger force production. Exp Brain Res 131(2):187–195CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Department of Music Acoustics – Wiener Klangstil (IWK)University of Music and Performing Arts ViennaViennaAustria

Section editors and affiliations

  • Sebastian I. Wolf
    • 1
  1. 1.Movement Analysis LaboratoryClinic for Orthopedics and Trauma Surgery; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury;Heidelberg University HospitalHeidelbergGermany

Personalised recommendations