Interferometric Space Missions for Exoplanet Science: Legacy of Darwin/TPF

Living reference work entry


Darwin/TPF is a project of an infrared space-based interferometer designed to directly detect and characterize terrestrial exoplanets around nearby stars. Unlike spectrophotometric instruments observing planetary transits, an interferometer does not rely on any particular geometric constraints and could characterize exoplanets with any orbital configuration around nearby stars. The idea to use an infrared nulling interferometer to characterize exoplanets dates back to Bracewell (Nature 274:780, 1978) and was extensively studied in the 1990s and 2000s by both ESA and NASA. The project focuses on the mid-infrared regime (5–20 μm), which provides access to key features of exoplanets, such as their size, their temperature, the presence of an atmosphere, their climate structure, as well as the presence of important atmospheric molecules such as H2O, CO2, O3, NH3, and CH4. This wavelength regime also provides a favorable planet/star contrast to detect the thermal emission of temperate ( ∼ 300 K) exoplanets (107 vs 1010 in the visible). In this chapter, we first review the scientific rationale of a mid-infrared nulling interferometer and present how it would provide an essential context for interpreting detections of possible biosignatures. Then, we present the main technological challenges identified during the ESA and NASA studies, and how they have progressed over the last 10 years. Finally, we discuss which technologies remain to be developed before flying such an instrument and possible ways to make Darwin/TPF a reality in the midterm future.



The authors thank A. Léger, M. Fridlund, and B. Mennesson for reading and commenting on the manuscript. The authors would also like to thank F. Selsis, H. Rauer, M. Godolt, A. Garcia Munoz, J.L. Grenfell, and F. Tian for providing figures and/or running simulations for Proxima Cen b. This work was partly funded by the European Research Council under the European Union’s Seventh Framework Program (ERC Grant Agreement n. 337569) and by the French Community of Belgium through an ARC grant for Concerted Research Action. Some of research described in this publication was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.


  1. Angel JRP, Cheng AYS, Woolf NJ (1986) A space telescope for infrared spectroscopy of Earth-like planets. Nature 322:341–343. doi:10.1038/322341a0 ADSCrossRefGoogle Scholar
  2. Angel JR, Burge JH, Woolf NJ (1997) Detection and spectroscopy of exo-planets like Earth. In: Ardeberg AL (ed) Optical Telescopes of Today and Tomorrow. Proceedings SPIE, vol 2871, pp 516–519. doi:10.1117/12.269076 CrossRefGoogle Scholar
  3. Anglada-Escudé G, Amado PJ, Barnes J, Berdiñas ZM, Butler RP, Coleman GAL, de la Cueva I, Dreizler S, Endl M, Giesers B, Jeffers SV, Jenkins JS, Jones HRA, Kiraga M, Kürster M, López-González MJ, Marvin CJ, Morales N, Morin J, Nelson RP, Ortiz J, Ofir A, Paardekooper SJ, Reiners A, Rodríguez E, Rodriguez-López C, Sarmiento LF, Strachan JP, Tsapras Y, Tuomi M, Zechmeister M (2016) A terrestrial planet candidate in a temperate orbit around proxima centauri. Nature 536(7617):437–440ADSCrossRefGoogle Scholar
  4. Beichman C (2000) NASA’s terrestrial planet finder (TPF). In: Schürmann B (ed) Darwin and astronomy: the infrared space interferometer, vol 451. ESA Special Publication, Noordwijk, p 239Google Scholar
  5. Beichman CA, Woolf NJ, Lindensmith CA (1999) The terrestrial planet finder (TPF): a NASA origins program to search for habitable planets. JPL publicationGoogle Scholar
  6. Beichman CA, Fridlund M, Traub WA, Stapelfeldt KR, Quirrenbach A, Seager S (2007) Comparative planetology and the search for life beyond the solar system. Protostars and planets V, pp 915–928. astro-ph/0601469Google Scholar
  7. Beichman C, Benneke B, Knutson H, Smith R, Lagage PO, Dressing C, Latham D, Lunine J, Birkmann S, Ferruit P, Giardino G, Kempton E, Carey S, Krick J, Deroo PD, Mandell A, Ressler ME, Shporer A, Swain M, Vasisht G, Ricker G, Bouwman J, Crossfield I, Greene T, Howell S, Christiansen J, Ciardi D, Clampin M, Greenhouse M, Sozzetti A, Goudfrooij P, Hines D, Keyes T, Lee J, McCullough P, Robberto M, Stansberry J, Valenti J, Rieke M, Rieke G, Fortney J, Bean J, Kreidberg L, Ehrenreich D, Deming D, Albert L, Doyon R, Sing D (2014) Observations of transiting exoplanets with the James Webb Space Telescope (JWST). PASP 126:1134. doi:10.1086/679566 ADSCrossRefGoogle Scholar
  8. Blackwood GH, Serabyn E, Dubovitsky S, Aung M, Gunter SM, Henry C (2003) System design and technology development for the Terrestrial Planet Finder infrared interferometer. In: Coulter DR (ed) Techniques and Instrumentation for Detection of Exoplanets, Proceedings of SPIE, vol 5170, pp 129–143. doi:10.1117/12.521311 CrossRefGoogle Scholar
  9. Bolmont E, Libert AS, Leconte J, Selsis F (2016) Habitability of planets on eccentric orbits: limits of the mean flux approximation. A&A 591:A106. doi:10.1051/0004-6361/201628073, 1604.06091
  10. Bracewell RN (1978) Detecting nonsolar planets by spinning infrared interferometer. Nature 274:780. doi:10.1038/274780a0 ADSCrossRefGoogle Scholar
  11. Brandl BR, Feldt M, Glasse A, Guedel M, Heikamp S, Kenworthy M, Lenzen R, Meyer MR, Molster F, Paalvast S, Pantin EJ, Quanz SP, Schmalzl E, Stuik R, Venema L, Waelkens C (2014) METIS: the mid-infrared E-ELT imager and spectrograph. In: Ground-Based and Airborne Instrumentation for Astronomy V, Proceedings of SPIE, vol 9147, p 914721. doi:10.1117/12.2056468, 1409.3087
  12. Burrows AS (2014) Highlights in the study of exoplanet atmospheres. Nature 513:345–352. doi:10.1038/nature13782, 1409.7320
  13. Cockell CS, Léger A, Fridlund M, Herbst TM, Kaltenegger L, Absil O, Beichman C, Benz W, Blanc M, Brack A, Chelli A, Colangeli L, Cottin H, Coudé du Foresto V, Danchi WC, Defrère D, den Herder JW, Eiroa C, Greaves J, Henning T, Johnston KJ, Jones H, Labadie L, Lammer H, Launhardt R, Lawson P, Lay OP, LeDuigou JM, Liseau R, Malbet F, Martin SR, Mawet D, Mourard D, Moutou C, Mugnier LM, Ollivier M, Paresce F, Quirrenbach A, Rabbia YD, Raven JA, Rottgering HJA, Rouan D, Santos NC, Selsis F, Serabyn E, Shibai H, Tamura M, Thiébaut E, Westall F, White GJ (2009) Darwin-A mission to detect and search for life on extrasolar planets. Astrobiology 9:1–22. doi:10.1089/ast.2007.0227, 0805.1873
  14. Colavita MM, Serabyn E, Millan-Gabet R, Koresko CD, Akeson RL, Booth AJ, Mennesson BP, Ragland SD, Appleby EC, Berkey BC, Cooper A, Crawford SL, Creech-Eakman MJ, Dahl W, Felizardo C, Garcia-Gathright JI, Gathright JT, Herstein JS, Hovland EE, Hrynevych MA, Ligon ER, Medeiros DW, Moore JD, Morrison D, Paine CG, Palmer DL, Panteleeva T, Smith B, Swain MR, Smythe RF, Summers KR, Tsubota K, Tyau C, Vasisht G, Wetherell E, Wizinowich PL, Woillez JM (2009) Keck interferometer nuller data reduction and on-sky performance. PASP 121:1120–1138. doi:10.1086/606063 ADSCrossRefGoogle Scholar
  15. Cowan NB, Voigt A, Abbot DS (2012) Thermal phases of Earth-like planets: estimating thermal inertia from eccentricity, obliquity, and diurnal forcing. ApJ 757:80. doi:10.1088/0004-637X/757/1/80, 1205.5034
  16. Crooke JA, Roberge A, Domagal-Goldman SD, Mandell AM, Bolcar MR, Rioux NM, Perez MR, Smith EC (2016) Status and path forward for the large ultraviolet/optical/infrared surveyor (LUVOIR) mission concept study. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Proceedings SPIE, vol 9904, p 99044R. doi:10.1117/12.2233084
  17. Crossfield IJM, Hansen BMS, Harrington J, Cho JYK, Deming D, Menou K, Seager S (2010) A new 24 μm phase curve for υ andromedae b. ApJ 723:1436–1446. doi:10.1088/0004-637X/723/2/1436, 1008.0393
  18. Danchi WC, Barry RK, Lawson PR, Traub WA, Unwin S (2008) The Fourier-Kelvin stellar interferometer (FKSI): a review, progress report, and update. In: Optical and Infrared Interferometry, Proceedings of SPIE, vol 7013, p 70132Q. doi:10.1117/12.790649 ADSGoogle Scholar
  19. Defrère D (2009) Detection of exozodiacal dust; a step toward Earth-like planet characterization with infrared interferometry. PhD thesis, Liège University, LiègeGoogle Scholar
  20. Defrère D, Absil O, Coudé du Foresto V, Danchi WC, den Hartog R (2008a) Nulling interferometry: performance comparison between space and ground-based sites for exozodiacal disc detection. A&A 490:435–445. doi:10.1051/0004-6361:200810248, 0808.3713
  21. Defrère D, Lay O, den Hartog R, Absil O (2008b) Earth-like planets: science performance predictions for future nulling interferometry missions. In: Optical and Infrared Interferometry, Proceedings of SPIEGoogle Scholar
  22. Defrère D, Absil O, den Hartog R, Hanot C, Stark C (2010) Nulling interferometry: impact of exozodiacal clouds on the performance of future life-finding space missions. A&A 509:A9. doi:10.1051/0004-6361/200912973, 0910.3486
  23. Defrère D, Hinz PM, Skemer AJ, Kennedy GM, Bailey VP, Hoffmann WF, Mennesson B, Millan-Gabet R, Danchi WC, Absil O, Arbo P, Beichman C, Brusa G, Bryden G, Downey EC, Durney O, Esposito S, Gaspar A, Grenz P, Haniff C, Hill JM, Lebreton J, Leisenring JM, Males JR, Marion L, McMahon TJ, Montoya M, Morzinski KM, Pinna E, Puglisi A, Rieke G, Roberge A, Serabyn E, Sosa R, Stapeldfeldt K, Su K, Vaitheeswaran V, Vaz A, Weinberger AJ, Wyatt MC (2015) First-light LBT nulling interferometric observations: warm exozodiacal dust resolved within a few AU of η Crv. ApJ 799:42. doi:10.1088/0004-637X/799/1/42, 1501.04144
  24. Defrère D, Hinz PM, Mennesson B, Hoffmann WF, Millan-Gabet R, Skemer AJ, Bailey V, Danchi WC, Downey EC, Durney O, Grenz P, Hill JM, McMahon TJ, Montoya M, Spalding E, Vaz A, Absil O, Arbo P, Bailey H, Brusa G, Bryden G, Esposito S, Gaspar A, Haniff CA, Kennedy GM, Leisenring JM, Marion L, Nowak M, Pinna E, Powell K, Puglisi A, Rieke G, Roberge A, Serabyn E, Sosa R, Stapeldfeldt K, Su K, Weinberger AJ, Wyatt MC (2016) Nulling data reduction and on-sky performance of the large binocular telescope interferometer. ApJ 824:66. doi:10.3847/0004-637X/824/2/66, 1601.06866
  25. Des Marais DJ, Harwit MO, Jucks KW, Kasting JF, Lin DNC, Lunine JI, Schneider J, Seager S, Traub WA, Woolf NJ (2002) Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2:153–181. doi:10.1089/15311070260192246 ADSCrossRefGoogle Scholar
  26. Eisenhauer F, Perrin G, Brandner W, Straubmeier C, Perraut K, Amorim A, Schöller M, Gillessen S, Kervella P, Benisty M, Araujo-Hauck C, Jocou L, Lima J, Jakob G, Haug M, Clénet Y, Henning T, Eckart A, Berger JP, Garcia P, Abuter R, Kellner S, Paumard T, Hippler S, Fischer S, Moulin T, Villate J, Avila G, Gräter A, Lacour S, Huber A, Wiest M, Nolot A, Carvas P, Dorn R, Pfuhl O, Gendron E, Kendrew S, Yazici S, Anton S, Jung Y, Thiel M, Choquet É, Klein R, Teixeira P, Gitton P, Moch D, Vincent F, Kudryavtseva N, Ströbele S, Sturm S, Fédou P, Lenzen R, Jolley P, Kister C, Lapeyrère V, Naranjo V, Lucuix C, Hofmann R, Chapron F, Neumann U, Mehrgan L, Hans O, Rousset G, Ramos J, Suarez M, Lederer R, Reess JM, Rohloff RR, Haguenauer P, Bartko H, Sevin A, Wagner K, Lizon JL, Rabien S, Collin C, Finger G, Davies R, (2011) GRAVITY: observing the Universe in motion. The Messenger 143:16–24ADSGoogle Scholar
  27. Enya K, Kataza H, Bierden P (2009) A micro electrical mechanical systems (MEMS)-based cryogenic deformable mirror. PASP 121:260–265. doi:10.1086/598171 ADSCrossRefGoogle Scholar
  28. Errmann R, Minardi S, Labadie L, Muthusubramanian B, Dreisow F, Nolte S, Pertsch T (2015) Interferometric nulling of four channels with integrated optics. Appl Opt 54:7449. doi:10.1364/AO.54.007449 ADSCrossRefGoogle Scholar
  29. Fischer PD, Knutson HA, Sing DK, Henry GW, Williamson MW, Fortney JJ, Burrows AS, Kataria T, Nikolov N, Showman AP, Ballester GE, Désert JM, Aigrain S, Deming D, Lecavelier des Etangs A, Vidal-Madjar A (2016) HST Hot-Jupiter transmission spectral survey: clear skies for cool saturn WASP-39b. ApJ 827:19. doi:10.3847/0004-637X/827/1/19, 1601.04761
  30. Fridlund CVM (2000) Darwin – the infrared space interferometer. In: Schürmann B (ed) Darwin and astronomy: the infrared space interferometer, vol 451. ESA Special Publication, Noordwijk, p 11Google Scholar
  31. Fridlund CVM (2004) The DARWIN project – an ESA cornerstone candidate mission. In: Penny A (ed) Planetary Systems in the Universe, IAU Symposium, vol 202, p 451Google Scholar
  32. Fridlund M, Gondoin P (2003) GENIE – the Darwin demonstrator. Ap&SS 286:93–98. doi:10.1023/A:1026166313620 ADSCrossRefGoogle Scholar
  33. Fridlund CVM, d’Arcio L, den Hartog R, Karlsson A (2006) Status and recent progress of the Darwin mission in the cosmic vision program. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Proceedings SPIE, vol 6268, p 62680R. doi:10.1117/12.671040
  34. Fridlund M, Eiroa C, Henning T, Herbst T, Lammer H, Léger A, Liseau R, Paresce F, Penny A, Quirrenbach A, Röttgering H, Selsis F, White GJ, Absil O, Defrère D, Schneider J, Tinetti G, Karlsson A, Gondoin P, den Hartog R, D’Arcio L, Stankov AM, Kilter M, Erd C, Beichman C, Coulter D, Danchi W, Devirian M, Johnston KJ, Lawson P, Lay OP, Lunine J, Kaltenegger L (2010) The search for worlds like our own. Astrobiology 10:5–17. doi:10.1089/ast.2009.0380 ADSCrossRefGoogle Scholar
  35. Gargaud M, Amils R, Quintanilla JC, Cleaves HJ, Irvine WM, Pinti DL, Viso M (2011) Encyclopedia of astrobiology. doi:10.1007/978-3-642-11274-4
  36. Gómez-Leal I (2013) Spectrophotometry of the infrared emission of Earth-like planets. Ph.D thesis, University of Bordeaux, FranceGoogle Scholar
  37. Gondoin PA, Absil O, den Hartog RH, Wilhelm RC, Gitton PB, D’Arcio LL, Fabry P, Puech F, Fridlund MC, Schoeller M, Glindemann A, Bakker EJ, Karlsson AL, Peacock AJ, Volonte S, Paresce F, Richichi A (2004) Darwin-GENIE: a nulling instrument at the VLTI. In: Traub WA (ed) New Frontiers in Stellar Interferometry, Proceedings of SPIE, vol 5491, p 775. doi:10.1117/12.549411
  38. Grenfell JL, Grießmeier JM, Patzer B, Rauer H, Segura A, Stadelmann A, Stracke B, Titz R, Von Paris P (2007) Biomarker response to galactic cosmic ray-induced NOx and the methane greenhouse effect in the atmosphere of an Earth-like planet orbiting an M dwarf star. Astrobiology 7:208–221. doi:10.1089/ast.2006.0129, astro-ph/0702622
  39. Hanot C, Mennesson B, Martin S, Liewer K, Loya F, Mawet D, Riaud P, Absil O, Serabyn E (2011) Improving interferometric null depth measurements using statistical distributions: theory and first results with the palomar fiber nuller. ApJ 729:110. doi:10.1088/0004-637X/729/2/110, 1103.4719
  40. Hinz P, Bailey VP, Defrère D, Downey E, Esposito S, Hill J, Hoffmann WF, Leisenring J, Montoya M, McMahon T, Puglisi A, Skemer A, Skrutskie M, Vaitheeswaran V, Vaz A (2014) Commissioning the LBTI for use as a nulling interferometer and coherent imager. In: Optical and Infrared Interferometry IV, Proceedings of SPIE, vol 9146, p 91460T. doi:10.1117/12.2057340 Google Scholar
  41. Hystad G, Downs RT, Grew ES, Hazen RM (2015) Statistical analysis of mineral diversity and distribution: Earth’s mineralogy is unique. Earth Planet Sci Lett 426:154–157. doi:10.1016/j.epsl.2015.06.028 ADSCrossRefGoogle Scholar
  42. Jovanovic N, Martinache F, Guyon O, Clergeon C, Singh G, Kudo T, Garrel V, Newman K, Doughty D, Lozi J, Males J, Minowa Y, Hayano Y, Takato N, Morino J, Kuhn J, Serabyn E, Norris B, Tuthill P, Schworer G, Stewart P, Close L, Huby E, Perrin G, Lacour S, Gauchet L, Vievard S, Murakami N, Oshiyama F, Baba N, Matsuo T, Nishikawa J, Tamura M, Lai O, Marchis F, Duchene G, Kotani T, Woillez J (2015) The Subaru coronagraphic extreme adaptive optics system: enabling high-contrast imaging on solar-system scales. PASP 127:890. doi:10.1086/682989, 1507.00017
  43. Kaltenegger L, Traub WA, Jucks KW (2007) Spectral evolution of an Earth-like planet. ApJ 658:598–616. doi:10.1086/510996, astro-ph/0609398
  44. Kaltenegger L, Eiroa C, Fridlund CVM (2010) Target star catalogue for Darwin nearby stellar sample for a search for terrestrial planets. Ap&SS 326:233–247. doi:10.1007/s10509-009-0223-3, 0810.5138
  45. Karlsson AL, Wallner O, Perdigues Armengol JM, Absil O (2004) Three telescope nuller based on multibeam injection into single-mode waveguide. In: Traub WA (ed) Proceedings of SPIE, vol 5491, pp 831–842Google Scholar
  46. Kitzmann D, Patzer ABC, von Paris P, Godolt M, Rauer H (2011) Clouds in the atmospheres of extrasolar planets. III. Impact of low and high-level clouds on the reflection spectra of Earth-like planets. A&A 534:A63. doi:10.1051/0004-6361/201117375, 1108.3274
  47. Kleidon A (2010) Life, hierarchy, and the thermodynamic machinery of planet Earth. Phys Life Rev 7:424–460. doi:10.1016/j.plrev.2010.10.002 ADSCrossRefGoogle Scholar
  48. Knutson HA, Charbonneau D, Allen LE, Fortney JJ, Agol E, Cowan NB, Showman AP, Cooper CS, Megeath ST (2007) A map of the day-night contrast of the extrasolar planet HD 189733b. Nature 447:183–186. doi:10.1038/nature05782, 0705.0993
  49. Krissansen-Totton J, Bergsman DS, Catling DC (2016) On detecting biospheres from chemical thermodynamic disequilibrium in planetary atmospheres. Astrobiology 16:39–67. doi:10.1089/ast.2015.1327, 1503.08249
  50. Ksendzov A, Lay O, Martin S, Sanghera JS, Busse LE, Kim WH, Pureza PC, Nguyen VQ, Aggarwal ID (2007) Characterization of mid-infrared single mode fibers as modal filters. Appl Opt 46:7957–7962. doi:10.1364/AO.46.007957 ADSCrossRefGoogle Scholar
  51. Ksendzov A, Lewi T, Lay OP, Martin SR, Gappinger RO, Lawson PR, Peters RD, Shalem S, Tsun A, Katzir A (2008) Modal filtering for midinfrared nulling interferometry using single mode silver halide fibers. Appl Opt 47:5728. doi:10.1364/AO.47.005728 ADSCrossRefGoogle Scholar
  52. Lawson P, Traub W (2006) Earth-Like exoplanets: the science of NASA’s navigator program. JPL Publication, PasadenaGoogle Scholar
  53. Lawson PR, Lay OP, Johnston KJ, Beichman CA (2007) Terrestrial Planet Finder Interferometer Science Working Group Report. NASA STI/Recon Technical Report N 8Google Scholar
  54. Lay OP (2004) Systematic errors in nulling interferometers. Appl Opt 43:6100–6123. doi:10.1364/AO.43.006100 ADSCrossRefGoogle Scholar
  55. Lay OP, Martin SR, Hunyadi SL (2007) Planet-finding performance of the TPF-I Emma architecture. In: Techniques and Instrumentation for Detection of Exoplanets III, Proceedings of SPIE, vol 6693, p 66930A. doi:10.1117/12.732230 Google Scholar
  56. Le Bouquin JB, Berger JP, Lazareff B, Zins G, Haguenauer P, Jocou L, Kern P, Millan-Gabet R, Traub W, Absil O, Augereau JC, Benisty M, Blind N, Bonfils X, Bourget P, Delboulbe A, Feautrier P, Germain M, Gitton P, Gillier D, Kiekebusch M, Kluska J, Knudstrup J, Labeye P, Lizon JL, Monin JL, Magnard Y, Malbet F, Maurel D, Ménard F, Micallef M, Michaud L, Montagnier G, Morel S, Moulin T, Perraut K, Popovic D, Rabou P, Rochat S, Rojas C, Roussel F, Roux A, Stadler E, Stefl S, Tatulli E, Ventura N (2011) PIONIER: a 4-telescope visitor instrument at VLTI. A&A 535:A67. doi:10.1051/0004-6361/201117586, 1109.1918
  57. Lederberg J (1965) Signs of life: criterion-system of exobiology. Nature 207:9–13. doi:10.1038/207009a0 ADSCrossRefGoogle Scholar
  58. Leger A, Pirre M, Marceau FJ (1993) Search for primitive life on a distant planet: relevance of 02 and 03 detections. A&A 277:309ADSGoogle Scholar
  59. Léger A, Mariotti JM, Mennesson B, Ollivier M, Puget JL, Rouan D, Schneider J (1996a) Could we search for primitive life on extrasolar planets in the near future? Icarus 123:249–255. doi:10.1006/icar.1996.0155 ADSCrossRefGoogle Scholar
  60. Léger A, Mariotti JM, Mennesson B, Ollivier M, Puget JL, Rouan D, Schneider J (1996b) The DARWIN project. Ap&SS 241:135–146. doi:10.1007/BF00644221 ADSGoogle Scholar
  61. Léger A, Selsis F, Sotin C, Guillot T, Despois D, Mawet D, Ollivier M, Labèque A, Valette C, Brachet F, Chazelas B, Lammer H (2004) A new family of planets? “Ocean-Planets”. Icarus 169:499–504. doi:10.1016/j.icarus.2004.01.001, astro-ph/0308324
  62. Léger A, Fontecave M, Labeyrie A, Samuel B, Demangeon O, Valencia D (2011) Is the presence of oxygen on an exoplanet a reliable biosignature? Astrobiology 11:335–341. doi:10.1089/ast.2010.0516 ADSCrossRefGoogle Scholar
  63. Lovelock JE (1965) A physical basis for life detection experiments. Nature 207:568–570. doi:10.1038/207568a0 ADSCrossRefGoogle Scholar
  64. Martin SR, Booth AJ (2010) Demonstration of exoplanet detection using an infrared telescope array. A&A 520:A96. doi:10.1051/0004-6361/201014942 ADSCrossRefGoogle Scholar
  65. Martin S, Booth A, Liewer K, Raouf N, Loya F, Tang H (2012) High performance testbed for four-beam infrared interferometric nulling and exoplanet detection. Appl Opt 51:3907–3921. doi:10.1364/AO.51.003907 ADSCrossRefGoogle Scholar
  66. Martin S, Serabyn G, Liewer K, Mennesson B (2017) Achromatic broadband nulling using a phase grating. Optica 4(1):110–113. doi:10.1364/OPTICA.4.000110,
  67. Maurin AS, Selsis F, Hersant F, Belu A (2012) Thermal phase curves of nontransiting terrestrial exoplanets. II. Characterizing airless planets. A&A 538:A95. doi:10.1051/0004-6361/201117054, 1110.3087
  68. Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378:355–359. doi:10.1038/378355a0 ADSCrossRefGoogle Scholar
  69. Mennesson B, Mariotti JM (1997) Array configurations for a space infrared nulling interferometer dedicated to the search for Earth-like extrasolar planets. Icarus 128:202–212. doi:10.1006/icar.1997.5731 ADSCrossRefGoogle Scholar
  70. Mennesson B, Ollivier M, Ruilier C (2002) Use of single-mode waveguides to correct the optical defects of a nulling interferometer. J Opt Soc Am A 19:596–602. doi:10.1364/JOSAA.19.000596 ADSCrossRefGoogle Scholar
  71. Mennesson B, Léger A, Ollivier M (2005) Direct detection and characterization of extra-solar planets: the Mariotti space interferometer. Icarus 178:570–588. doi:10.1016/j.icarus.2005.05.012 ADSCrossRefGoogle Scholar
  72. Mennesson B, Hanot C, Serabyn E, Liewer K, Martin SR, Mawet D (2011a) High-contrast stellar observations within the diffraction limit at the palomar hale telescope. ApJ 743:178. doi:10.1088/0004-637X/743/2/178 ADSCrossRefGoogle Scholar
  73. Mennesson B, Serabyn E, Hanot C, Martin SR, Liewer K, Mawet D (2011b) New constraints on companions and dust within a few AU of vega. ApJ 736:14. doi:10.1088/0004-637X/736/1/14 ADSCrossRefGoogle Scholar
  74. Mennesson B, Millan-Gabet R, Serabyn E, Colavita MM, Absil O, Bryden G, Wyatt M, Danchi W, Defrère D, Doré O, Hinz P, Kuchner M, Ragland S, Scott N, Stapelfeldt K, Traub W, Woillez J (2014) Constraining the exozodiacal luminosity function of main-sequence stars: complete results from the Keck nuller mid-infrared surveys. ApJ 797:119. doi:10.1088/0004-637X/797/2/119 ADSCrossRefGoogle Scholar
  75. Mennesson B, Gaudi S, Seager S, Cahoy K, Domagal-Goldman S, Feinberg L, Guyon O, Kasdin J, Marois C, Mawet D, Tamura M, Mouillet D, Prusti T, Quirrenbach A, Robinson T, Rogers L, Scowen P, Somerville R, Stapelfeldt K, Stern D, Still M, Turnbull M, Booth J, Kiessling A, Kuan G, Warfield K (2016) The Habitable Exoplanet (HabEx) Imaging Mission: preliminary science drivers and technical requirements. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Proceedings SPIE, vol 9904, p 99040L. doi:10.1117/12.2240457
  76. Monnier JD, Ireland MJ, Kraus S, Baron F, Creech-Eakman M, Dong R, Isella A, Merand A, Michael E, Minardi S, Mozurkewich D, Petrov R, Rinehart S, ten Brummelaar T, Vasisht G, Wishnow E, Young J, Zhu Z (2016) Architecture design study and technology road map for the Planet Formation Imager (PFI). In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Proceedings SPIE, vol 9907, p 99071O. doi:10.1117/12.2233311, 1608.00580
  77. Moskovitz NA, Gaidos E, Williams DM (2009) The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets. Astrobiology 9:269–277. doi:10.1089/ast.2007.0209, 0810.2069
  78. Ollivier M, Absil O, Allard F, Berger JP, Bordé P, Cassaing F, Chazelas B, Chelli A, Chesneau O, Coudé du Foresto V, Defrère D, Duchon P, Gabor P, Gay J, Herwats E, Jacquinod S, Kern P, Kervella P, Le Duigou JM, Léger A, Lopez B, Malbet F, Mourard D, Pelat D, Perrin G, Rabbia Y, Rouan D, Reiss JM, Rousset G, Selsis F, Stee P, Surdej J (2009) PEGASE, an infrared interferometer to study stellar environments and low mass companions around nearby stars. Exp Astron 23:403–434. doi:10.1007/s10686-008-9133-6 ADSCrossRefGoogle Scholar
  79. Owen T (1980) The search for early forms of life in other planetary systems – future possibilities afforded by spectroscopic techniques. In: Papagiannis MD (ed) Strategies for the search for life in the Universe. Astrophysics and space science library, vol 83, p 177. doi:10.1007/978-94-009-9115-6-17
  80. Peters RD, Lay OP, Lawson PR (2010) Mid-infrared adaptive nulling for the detection of Earth-like exoplanets. PASP 122:85–92. doi:10.1086/649850 ADSCrossRefGoogle Scholar
  81. Quanz SP, Crossfield I, Meyer MR, Schmalzl E, Held J (2015) Direct detection of exoplanets in the 3–10 μm range with E-ELT/METIS. Int J Astrobiol 14:279–289. doi:10.1017/S1473550414000135, 1404.0831
  82. Rauer H, Gebauer S, Paris PV, Cabrera J, Godolt M, Grenfell JL, Belu A, Selsis F, Hedelt P, Schreier F, (2011) Potential biosignatures in super-Earth atmospheres. I. Spectral appearance of super-Earths around M dwarfs. A&A 529:A8. doi:10.1051/0004-6361/201014368
  83. Rugheimer S, Kaltenegger L, Zsom A, Segura A, Sasselov D (2013) Spectral fingerprints of Earth-like planets around FGK stars. Astrobiology 13:251–269. doi:10.1089/ast.2012.0888, 1212.2638
  84. Sagan C, Thompson WR, Carlson R, Gurnett D, Hord C (1993) A search for life on Earth from the Galileo spacecraft. Nature 365:715–721. doi:10.1038/365715a0 ADSCrossRefGoogle Scholar
  85. Seager S, Bains W (2015) The search for signs of life on exoplanets at the interface of chemistry and planetary science. Sci Adv 1:e1500,047. doi:10.1126/sciadv.1500047 CrossRefGoogle Scholar
  86. Seager S, Turner EL, Schafer J, Ford EB (2005) Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial plants. Astrobiology 5:372–390. doi:10.1089/ast.2005.5.372, astro-ph/0503302
  87. Segura A, Krelove K, Kasting JF, Sommerlatt D, Meadows V, Crisp D, Cohen M, Mlawer E (2003) Ozone concentrations and ultraviolet fluxes on Earth-Like planets around other stars. Astrobiology 3:689–708. doi:10.1089/153110703322736024 ADSCrossRefGoogle Scholar
  88. Segura A, Kasting JF, Meadows V, Cohen M, Scalo J, Crisp D, Butler RAH, Tinetti G (2005) Biosignatures from Earth-like planets around M dwarfs. Astrobiology 5:706–725. doi:10.1089/ast.2005.5.706, astro-ph/0510224
  89. Selsis F (2004) The atmosphere of terrestrial exoplanets: detection and characterization. In: Beaulieu J, Lecavelier Des Etangs A, Terquem C (eds) Extrasolar planets: today and tomorrow. Astronomical Society of the Pacific conference series, vol 321, p 170.
  90. Selsis F, Despois D, Parisot JP (2002) Signature of life on exoplanets: can Darwin produce false positive detections? A&A 388:985–1003. doi:10.1051/0004-6361:20020527 ADSCrossRefGoogle Scholar
  91. Selsis F, Wordsworth RD, Forget F (2011) Thermal phase curves of nontransiting terrestrial exoplanets. I. Characterizing atmospheres. A&A 532:A1. doi:10.1051/0004-6361/201116654, 1104.4763
  92. Selsis F, Maurin AS, Hersant F, Leconte J, Bolmont E, Raymond SN, Delbo’ M (2013) The effect of rotation and tidal heating on the thermal lightcurves of super Mercuries. A&A 555:A51. doi:10.1051/0004-6361/201321661, 1305.3858
  93. Shao M, Unwin SC, Beichman C, Catanzarite J, Edberg SJ, Marr JC IV, Marcy G (2007) Finding Earth clones with SIM: the most promising near-term technique to detect, find masses for, and determine three-dimensional orbits of nearby habitable planets. In: Techniques and Instrumentation for Detection of Exoplanets III, Proceedings SPIE, vol 6693, p 66930C. doi:10.1117/12.734671, 0704.0952
  94. Simoncini E, Virgo N, Kleidon A (2013) Quantifying drivers of chemical disequilibrium: theory and application to methane in the Earth’s atmosphere. Earth Syst Dynam 4:317–331. doi:10.5194/esd-4-317-2013 ADSCrossRefGoogle Scholar
  95. Snellen IAG, Brandl BR, de Kok RJ, Brogi M, Birkby J, Schwarz H (2014) Fast spin of the young extrasolar planet β Pictoris b. Nature 509:63–65. doi:10.1038/nature13253 ADSCrossRefGoogle Scholar
  96. Tian F, France K, Linsky JL, Mauas PJD, Vieytes MC (2014) High stellar FUV/NUV ratio and oxygen contents in the atmospheres of potentially habitable planets. Earth Planet Sci Lett 385:22–27. doi:10.1016/j.epsl.2013.10.024 ADSCrossRefGoogle Scholar
  97. Traub WA, Kaltenegger L, Jucks KW, Turnbull MC (2006) Direct imaging of Earth-like planets from space (TPF-C). In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Proceedings SPIE, vol 6265, p 626502. doi:10.1117/12.676257
  98. Velusamy T, Angel RP, Eatchel A, Tenerelli D, Woolf NJ (2003) Single and double Bracewell nulling interferometer in space. In: Fridlund M, Henning T, Lacoste H (eds) Earths: DARWIN/TPF and the search for extrasolar terrestrial planets, vol 539. ESA Special Publication, Noordwijk, pp 631–636Google Scholar
  99. von Paris P, Cabrera J, Godolt M, Grenfell JL, Hedelt P, Rauer H, Schreier F, Stracke B (2011) Spectroscopic characterization of the atmospheres of potentially habitable planets: GL 581 d as a model case study. A&A 534:A26. doi:10.1051/0004-6361/201117091, 1108.3670
  100. von Paris P, Hedelt P, Selsis F, Schreier F, Trautmann T (2013) Characterization of potentially habitable planets: retrieval of atmospheric and planetary properties from emission spectra. A&A 551:A120. doi:10.1051/0004-6361/201220009, 1301.0217
  101. Wallner O, Leeb WR, Winzer PJ (2002) Minimum length of a single-mode fiber spatial filter. J Opt Soc Am A 19:2445–2448. doi:10.1364/JOSAA.19.002445 ADSCrossRefGoogle Scholar
  102. Weber V, Barillot M, Haguenauer P, Kern PY, Schanen-Duport I, Labeye PR, Pujol L, Sodnik Z (2004) Nulling interferometer based on an integrated optics combiner. In: Traub WA (ed) New Frontiers in Stellar Interferometry, Proceedings of SPIE, vol 5491, p 842Google Scholar
  103. Woolf N, Angel JR (1998) Astronomical searches for Earth-like planets and signs of life. ARA&A 36:507–538. doi:10.1146/annurev.astro.36.1.507 ADSCrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Space Sciences, Technologies & Astrophysics Research (STAR) InstituteUniversity of LiegeLiegeBelgium
  2. 2.F.R.S.-FNRS Research Associate, Space Sciences, Technologies & Astrophysics Research (STAR) InstituteUniversity of LiegeLiegeBelgium
  3. 3.NASA Exoplanet Science Institute, California Institute of TechnologyJet Propulsion LaboratoryPasadenaUSA

Personalised recommendations