Skip to main content

Interferometric Space Missions for Exoplanet Science: Legacy of Darwin/TPF

  • Living reference work entry
  • First Online:

Abstract

Darwin/TPF is a project of an infrared space-based interferometer designed to directly detect and characterize terrestrial exoplanets around nearby stars. Unlike spectrophotometric instruments observing planetary transits, an interferometer does not rely on any particular geometric constraints and could characterize exoplanets with any orbital configuration around nearby stars. The idea to use an infrared nulling interferometer to characterize exoplanets dates back to Bracewell (Nature 274:780, 1978) and was extensively studied in the 1990s and 2000s by both ESA and NASA. The project focuses on the mid-infrared regime (5–20 μm), which provides access to key features of exoplanets, such as their size, their temperature, the presence of an atmosphere, their climate structure, as well as the presence of important atmospheric molecules such as H2O, CO2, O3, NH3, and CH4. This wavelength regime also provides a favorable planet/star contrast to detect the thermal emission of temperate ( ∼ 300 K) exoplanets (107 vs 1010 in the visible). In this chapter, we first review the scientific rationale of a mid-infrared nulling interferometer and present how it would provide an essential context for interpreting detections of possible biosignatures. Then, we present the main technological challenges identified during the ESA and NASA studies, and how they have progressed over the last 10 years. Finally, we discuss which technologies remain to be developed before flying such an instrument and possible ways to make Darwin/TPF a reality in the midterm future.

This is a preview of subscription content, log in via an institution.

References

  • Angel JRP, Cheng AYS, Woolf NJ (1986) A space telescope for infrared spectroscopy of Earth-like planets. Nature 322:341–343. doi:10.1038/322341a0

    Article  ADS  Google Scholar 

  • Angel JR, Burge JH, Woolf NJ (1997) Detection and spectroscopy of exo-planets like Earth. In: Ardeberg AL (ed) Optical Telescopes of Today and Tomorrow. Proceedings SPIE, vol 2871, pp 516–519. doi:10.1117/12.269076

    Chapter  Google Scholar 

  • Anglada-Escudé G, Amado PJ, Barnes J, Berdiñas ZM, Butler RP, Coleman GAL, de la Cueva I, Dreizler S, Endl M, Giesers B, Jeffers SV, Jenkins JS, Jones HRA, Kiraga M, Kürster M, López-González MJ, Marvin CJ, Morales N, Morin J, Nelson RP, Ortiz J, Ofir A, Paardekooper SJ, Reiners A, Rodríguez E, Rodriguez-López C, Sarmiento LF, Strachan JP, Tsapras Y, Tuomi M, Zechmeister M (2016) A terrestrial planet candidate in a temperate orbit around proxima centauri. Nature 536(7617):437–440

    Article  ADS  Google Scholar 

  • Beichman C (2000) NASA’s terrestrial planet finder (TPF). In: Schürmann B (ed) Darwin and astronomy: the infrared space interferometer, vol 451. ESA Special Publication, Noordwijk, p 239

    Google Scholar 

  • Beichman CA, Woolf NJ, Lindensmith CA (1999) The terrestrial planet finder (TPF): a NASA origins program to search for habitable planets. JPL publication

    Google Scholar 

  • Beichman CA, Fridlund M, Traub WA, Stapelfeldt KR, Quirrenbach A, Seager S (2007) Comparative planetology and the search for life beyond the solar system. Protostars and planets V, pp 915–928. astro-ph/0601469

    Google Scholar 

  • Beichman C, Benneke B, Knutson H, Smith R, Lagage PO, Dressing C, Latham D, Lunine J, Birkmann S, Ferruit P, Giardino G, Kempton E, Carey S, Krick J, Deroo PD, Mandell A, Ressler ME, Shporer A, Swain M, Vasisht G, Ricker G, Bouwman J, Crossfield I, Greene T, Howell S, Christiansen J, Ciardi D, Clampin M, Greenhouse M, Sozzetti A, Goudfrooij P, Hines D, Keyes T, Lee J, McCullough P, Robberto M, Stansberry J, Valenti J, Rieke M, Rieke G, Fortney J, Bean J, Kreidberg L, Ehrenreich D, Deming D, Albert L, Doyon R, Sing D (2014) Observations of transiting exoplanets with the James Webb Space Telescope (JWST). PASP 126:1134. doi:10.1086/679566

    Article  ADS  Google Scholar 

  • Blackwood GH, Serabyn E, Dubovitsky S, Aung M, Gunter SM, Henry C (2003) System design and technology development for the Terrestrial Planet Finder infrared interferometer. In: Coulter DR (ed) Techniques and Instrumentation for Detection of Exoplanets, Proceedings of SPIE, vol 5170, pp 129–143. doi:10.1117/12.521311

    Chapter  Google Scholar 

  • Bolmont E, Libert AS, Leconte J, Selsis F (2016) Habitability of planets on eccentric orbits: limits of the mean flux approximation. A&A 591:A106. doi:10.1051/0004-6361/201628073, 1604.06091

  • Bracewell RN (1978) Detecting nonsolar planets by spinning infrared interferometer. Nature 274:780. doi:10.1038/274780a0

    Article  ADS  Google Scholar 

  • Brandl BR, Feldt M, Glasse A, Guedel M, Heikamp S, Kenworthy M, Lenzen R, Meyer MR, Molster F, Paalvast S, Pantin EJ, Quanz SP, Schmalzl E, Stuik R, Venema L, Waelkens C (2014) METIS: the mid-infrared E-ELT imager and spectrograph. In: Ground-Based and Airborne Instrumentation for Astronomy V, Proceedings of SPIE, vol 9147, p 914721. doi:10.1117/12.2056468, 1409.3087

  • Burrows AS (2014) Highlights in the study of exoplanet atmospheres. Nature 513:345–352. doi:10.1038/nature13782, 1409.7320

  • Cockell CS, Léger A, Fridlund M, Herbst TM, Kaltenegger L, Absil O, Beichman C, Benz W, Blanc M, Brack A, Chelli A, Colangeli L, Cottin H, Coudé du Foresto V, Danchi WC, Defrère D, den Herder JW, Eiroa C, Greaves J, Henning T, Johnston KJ, Jones H, Labadie L, Lammer H, Launhardt R, Lawson P, Lay OP, LeDuigou JM, Liseau R, Malbet F, Martin SR, Mawet D, Mourard D, Moutou C, Mugnier LM, Ollivier M, Paresce F, Quirrenbach A, Rabbia YD, Raven JA, Rottgering HJA, Rouan D, Santos NC, Selsis F, Serabyn E, Shibai H, Tamura M, Thiébaut E, Westall F, White GJ (2009) Darwin-A mission to detect and search for life on extrasolar planets. Astrobiology 9:1–22. doi:10.1089/ast.2007.0227, 0805.1873

  • Colavita MM, Serabyn E, Millan-Gabet R, Koresko CD, Akeson RL, Booth AJ, Mennesson BP, Ragland SD, Appleby EC, Berkey BC, Cooper A, Crawford SL, Creech-Eakman MJ, Dahl W, Felizardo C, Garcia-Gathright JI, Gathright JT, Herstein JS, Hovland EE, Hrynevych MA, Ligon ER, Medeiros DW, Moore JD, Morrison D, Paine CG, Palmer DL, Panteleeva T, Smith B, Swain MR, Smythe RF, Summers KR, Tsubota K, Tyau C, Vasisht G, Wetherell E, Wizinowich PL, Woillez JM (2009) Keck interferometer nuller data reduction and on-sky performance. PASP 121:1120–1138. doi:10.1086/606063

    Article  ADS  Google Scholar 

  • Cowan NB, Voigt A, Abbot DS (2012) Thermal phases of Earth-like planets: estimating thermal inertia from eccentricity, obliquity, and diurnal forcing. ApJ 757:80. doi:10.1088/0004-637X/757/1/80, 1205.5034

  • Crooke JA, Roberge A, Domagal-Goldman SD, Mandell AM, Bolcar MR, Rioux NM, Perez MR, Smith EC (2016) Status and path forward for the large ultraviolet/optical/infrared surveyor (LUVOIR) mission concept study. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Proceedings SPIE, vol 9904, p 99044R. doi:10.1117/12.2233084

  • Crossfield IJM, Hansen BMS, Harrington J, Cho JYK, Deming D, Menou K, Seager S (2010) A new 24 μm phase curve for υ andromedae b. ApJ 723:1436–1446. doi:10.1088/0004-637X/723/2/1436, 1008.0393

  • Danchi WC, Barry RK, Lawson PR, Traub WA, Unwin S (2008) The Fourier-Kelvin stellar interferometer (FKSI): a review, progress report, and update. In: Optical and Infrared Interferometry, Proceedings of SPIE, vol 7013, p 70132Q. doi:10.1117/12.790649

    ADS  Google Scholar 

  • Defrère D (2009) Detection of exozodiacal dust; a step toward Earth-like planet characterization with infrared interferometry. PhD thesis, Liège University, Liège

    Google Scholar 

  • Defrère D, Absil O, Coudé du Foresto V, Danchi WC, den Hartog R (2008a) Nulling interferometry: performance comparison between space and ground-based sites for exozodiacal disc detection. A&A 490:435–445. doi:10.1051/0004-6361:200810248, 0808.3713

  • Defrère D, Lay O, den Hartog R, Absil O (2008b) Earth-like planets: science performance predictions for future nulling interferometry missions. In: Optical and Infrared Interferometry, Proceedings of SPIE

    Google Scholar 

  • Defrère D, Absil O, den Hartog R, Hanot C, Stark C (2010) Nulling interferometry: impact of exozodiacal clouds on the performance of future life-finding space missions. A&A 509:A9. doi:10.1051/0004-6361/200912973, 0910.3486

  • Defrère D, Hinz PM, Skemer AJ, Kennedy GM, Bailey VP, Hoffmann WF, Mennesson B, Millan-Gabet R, Danchi WC, Absil O, Arbo P, Beichman C, Brusa G, Bryden G, Downey EC, Durney O, Esposito S, Gaspar A, Grenz P, Haniff C, Hill JM, Lebreton J, Leisenring JM, Males JR, Marion L, McMahon TJ, Montoya M, Morzinski KM, Pinna E, Puglisi A, Rieke G, Roberge A, Serabyn E, Sosa R, Stapeldfeldt K, Su K, Vaitheeswaran V, Vaz A, Weinberger AJ, Wyatt MC (2015) First-light LBT nulling interferometric observations: warm exozodiacal dust resolved within a few AU of η Crv. ApJ 799:42. doi:10.1088/0004-637X/799/1/42, 1501.04144

  • Defrère D, Hinz PM, Mennesson B, Hoffmann WF, Millan-Gabet R, Skemer AJ, Bailey V, Danchi WC, Downey EC, Durney O, Grenz P, Hill JM, McMahon TJ, Montoya M, Spalding E, Vaz A, Absil O, Arbo P, Bailey H, Brusa G, Bryden G, Esposito S, Gaspar A, Haniff CA, Kennedy GM, Leisenring JM, Marion L, Nowak M, Pinna E, Powell K, Puglisi A, Rieke G, Roberge A, Serabyn E, Sosa R, Stapeldfeldt K, Su K, Weinberger AJ, Wyatt MC (2016) Nulling data reduction and on-sky performance of the large binocular telescope interferometer. ApJ 824:66. doi:10.3847/0004-637X/824/2/66, 1601.06866

  • Des Marais DJ, Harwit MO, Jucks KW, Kasting JF, Lin DNC, Lunine JI, Schneider J, Seager S, Traub WA, Woolf NJ (2002) Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2:153–181. doi:10.1089/15311070260192246

    Article  ADS  Google Scholar 

  • Eisenhauer F, Perrin G, Brandner W, Straubmeier C, Perraut K, Amorim A, Schöller M, Gillessen S, Kervella P, Benisty M, Araujo-Hauck C, Jocou L, Lima J, Jakob G, Haug M, Clénet Y, Henning T, Eckart A, Berger JP, Garcia P, Abuter R, Kellner S, Paumard T, Hippler S, Fischer S, Moulin T, Villate J, Avila G, Gräter A, Lacour S, Huber A, Wiest M, Nolot A, Carvas P, Dorn R, Pfuhl O, Gendron E, Kendrew S, Yazici S, Anton S, Jung Y, Thiel M, Choquet É, Klein R, Teixeira P, Gitton P, Moch D, Vincent F, Kudryavtseva N, Ströbele S, Sturm S, Fédou P, Lenzen R, Jolley P, Kister C, Lapeyrère V, Naranjo V, Lucuix C, Hofmann R, Chapron F, Neumann U, Mehrgan L, Hans O, Rousset G, Ramos J, Suarez M, Lederer R, Reess JM, Rohloff RR, Haguenauer P, Bartko H, Sevin A, Wagner K, Lizon JL, Rabien S, Collin C, Finger G, Davies R, (2011) GRAVITY: observing the Universe in motion. The Messenger 143:16–24

    ADS  Google Scholar 

  • Enya K, Kataza H, Bierden P (2009) A micro electrical mechanical systems (MEMS)-based cryogenic deformable mirror. PASP 121:260–265. doi:10.1086/598171

    Article  ADS  Google Scholar 

  • Errmann R, Minardi S, Labadie L, Muthusubramanian B, Dreisow F, Nolte S, Pertsch T (2015) Interferometric nulling of four channels with integrated optics. Appl Opt 54:7449. doi:10.1364/AO.54.007449

    Article  ADS  Google Scholar 

  • Fischer PD, Knutson HA, Sing DK, Henry GW, Williamson MW, Fortney JJ, Burrows AS, Kataria T, Nikolov N, Showman AP, Ballester GE, Désert JM, Aigrain S, Deming D, Lecavelier des Etangs A, Vidal-Madjar A (2016) HST Hot-Jupiter transmission spectral survey: clear skies for cool saturn WASP-39b. ApJ 827:19. doi:10.3847/0004-637X/827/1/19, 1601.04761

  • Fridlund CVM (2000) Darwin – the infrared space interferometer. In: Schürmann B (ed) Darwin and astronomy: the infrared space interferometer, vol 451. ESA Special Publication, Noordwijk, p 11

    Google Scholar 

  • Fridlund CVM (2004) The DARWIN project – an ESA cornerstone candidate mission. In: Penny A (ed) Planetary Systems in the Universe, IAU Symposium, vol 202, p 451

    Google Scholar 

  • Fridlund M, Gondoin P (2003) GENIE – the Darwin demonstrator. Ap&SS 286:93–98. doi:10.1023/A:1026166313620

    Article  ADS  Google Scholar 

  • Fridlund CVM, d’Arcio L, den Hartog R, Karlsson A (2006) Status and recent progress of the Darwin mission in the cosmic vision program. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Proceedings SPIE, vol 6268, p 62680R. doi:10.1117/12.671040

  • Fridlund M, Eiroa C, Henning T, Herbst T, Lammer H, Léger A, Liseau R, Paresce F, Penny A, Quirrenbach A, Röttgering H, Selsis F, White GJ, Absil O, Defrère D, Schneider J, Tinetti G, Karlsson A, Gondoin P, den Hartog R, D’Arcio L, Stankov AM, Kilter M, Erd C, Beichman C, Coulter D, Danchi W, Devirian M, Johnston KJ, Lawson P, Lay OP, Lunine J, Kaltenegger L (2010) The search for worlds like our own. Astrobiology 10:5–17. doi:10.1089/ast.2009.0380

    Article  ADS  Google Scholar 

  • Gargaud M, Amils R, Quintanilla JC, Cleaves HJ, Irvine WM, Pinti DL, Viso M (2011) Encyclopedia of astrobiology. doi:10.1007/978-3-642-11274-4

  • Gómez-Leal I (2013) Spectrophotometry of the infrared emission of Earth-like planets. Ph.D thesis, University of Bordeaux, France

    Google Scholar 

  • Gondoin PA, Absil O, den Hartog RH, Wilhelm RC, Gitton PB, D’Arcio LL, Fabry P, Puech F, Fridlund MC, Schoeller M, Glindemann A, Bakker EJ, Karlsson AL, Peacock AJ, Volonte S, Paresce F, Richichi A (2004) Darwin-GENIE: a nulling instrument at the VLTI. In: Traub WA (ed) New Frontiers in Stellar Interferometry, Proceedings of SPIE, vol 5491, p 775. doi:10.1117/12.549411

  • Grenfell JL, Grießmeier JM, Patzer B, Rauer H, Segura A, Stadelmann A, Stracke B, Titz R, Von Paris P (2007) Biomarker response to galactic cosmic ray-induced NO x and the methane greenhouse effect in the atmosphere of an Earth-like planet orbiting an M dwarf star. Astrobiology 7:208–221. doi:10.1089/ast.2006.0129, astro-ph/0702622

  • Hanot C, Mennesson B, Martin S, Liewer K, Loya F, Mawet D, Riaud P, Absil O, Serabyn E (2011) Improving interferometric null depth measurements using statistical distributions: theory and first results with the palomar fiber nuller. ApJ 729:110. doi:10.1088/0004-637X/729/2/110, 1103.4719

  • Hinz P, Bailey VP, Defrère D, Downey E, Esposito S, Hill J, Hoffmann WF, Leisenring J, Montoya M, McMahon T, Puglisi A, Skemer A, Skrutskie M, Vaitheeswaran V, Vaz A (2014) Commissioning the LBTI for use as a nulling interferometer and coherent imager. In: Optical and Infrared Interferometry IV, Proceedings of SPIE, vol 9146, p 91460T. doi:10.1117/12.2057340

    Google Scholar 

  • Hystad G, Downs RT, Grew ES, Hazen RM (2015) Statistical analysis of mineral diversity and distribution: Earth’s mineralogy is unique. Earth Planet Sci Lett 426:154–157. doi:10.1016/j.epsl.2015.06.028

    Article  ADS  Google Scholar 

  • Jovanovic N, Martinache F, Guyon O, Clergeon C, Singh G, Kudo T, Garrel V, Newman K, Doughty D, Lozi J, Males J, Minowa Y, Hayano Y, Takato N, Morino J, Kuhn J, Serabyn E, Norris B, Tuthill P, Schworer G, Stewart P, Close L, Huby E, Perrin G, Lacour S, Gauchet L, Vievard S, Murakami N, Oshiyama F, Baba N, Matsuo T, Nishikawa J, Tamura M, Lai O, Marchis F, Duchene G, Kotani T, Woillez J (2015) The Subaru coronagraphic extreme adaptive optics system: enabling high-contrast imaging on solar-system scales. PASP 127:890. doi:10.1086/682989, 1507.00017

  • Kaltenegger L, Traub WA, Jucks KW (2007) Spectral evolution of an Earth-like planet. ApJ 658:598–616. doi:10.1086/510996, astro-ph/0609398

  • Kaltenegger L, Eiroa C, Fridlund CVM (2010) Target star catalogue for Darwin nearby stellar sample for a search for terrestrial planets. Ap&SS 326:233–247. doi:10.1007/s10509-009-0223-3, 0810.5138

  • Karlsson AL, Wallner O, Perdigues Armengol JM, Absil O (2004) Three telescope nuller based on multibeam injection into single-mode waveguide. In: Traub WA (ed) Proceedings of SPIE, vol 5491, pp 831–842

    Google Scholar 

  • Kitzmann D, Patzer ABC, von Paris P, Godolt M, Rauer H (2011) Clouds in the atmospheres of extrasolar planets. III. Impact of low and high-level clouds on the reflection spectra of Earth-like planets. A&A 534:A63. doi:10.1051/0004-6361/201117375, 1108.3274

  • Kleidon A (2010) Life, hierarchy, and the thermodynamic machinery of planet Earth. Phys Life Rev 7:424–460. doi:10.1016/j.plrev.2010.10.002

    Article  ADS  Google Scholar 

  • Knutson HA, Charbonneau D, Allen LE, Fortney JJ, Agol E, Cowan NB, Showman AP, Cooper CS, Megeath ST (2007) A map of the day-night contrast of the extrasolar planet HD 189733b. Nature 447:183–186. doi:10.1038/nature05782, 0705.0993

  • Krissansen-Totton J, Bergsman DS, Catling DC (2016) On detecting biospheres from chemical thermodynamic disequilibrium in planetary atmospheres. Astrobiology 16:39–67. doi:10.1089/ast.2015.1327, 1503.08249

  • Ksendzov A, Lay O, Martin S, Sanghera JS, Busse LE, Kim WH, Pureza PC, Nguyen VQ, Aggarwal ID (2007) Characterization of mid-infrared single mode fibers as modal filters. Appl Opt 46:7957–7962. doi:10.1364/AO.46.007957

    Article  ADS  Google Scholar 

  • Ksendzov A, Lewi T, Lay OP, Martin SR, Gappinger RO, Lawson PR, Peters RD, Shalem S, Tsun A, Katzir A (2008) Modal filtering for midinfrared nulling interferometry using single mode silver halide fibers. Appl Opt 47:5728. doi:10.1364/AO.47.005728

    Article  ADS  Google Scholar 

  • Lawson P, Traub W (2006) Earth-Like exoplanets: the science of NASA’s navigator program. JPL Publication, Pasadena

    Google Scholar 

  • Lawson PR, Lay OP, Johnston KJ, Beichman CA (2007) Terrestrial Planet Finder Interferometer Science Working Group Report. NASA STI/Recon Technical Report N 8

    Google Scholar 

  • Lay OP (2004) Systematic errors in nulling interferometers. Appl Opt 43:6100–6123. doi:10.1364/AO.43.006100

    Article  ADS  Google Scholar 

  • Lay OP, Martin SR, Hunyadi SL (2007) Planet-finding performance of the TPF-I Emma architecture. In: Techniques and Instrumentation for Detection of Exoplanets III, Proceedings of SPIE, vol 6693, p 66930A. doi:10.1117/12.732230

    Google Scholar 

  • Le Bouquin JB, Berger JP, Lazareff B, Zins G, Haguenauer P, Jocou L, Kern P, Millan-Gabet R, Traub W, Absil O, Augereau JC, Benisty M, Blind N, Bonfils X, Bourget P, Delboulbe A, Feautrier P, Germain M, Gitton P, Gillier D, Kiekebusch M, Kluska J, Knudstrup J, Labeye P, Lizon JL, Monin JL, Magnard Y, Malbet F, Maurel D, Ménard F, Micallef M, Michaud L, Montagnier G, Morel S, Moulin T, Perraut K, Popovic D, Rabou P, Rochat S, Rojas C, Roussel F, Roux A, Stadler E, Stefl S, Tatulli E, Ventura N (2011) PIONIER: a 4-telescope visitor instrument at VLTI. A&A 535:A67. doi:10.1051/0004-6361/201117586, 1109.1918

  • Lederberg J (1965) Signs of life: criterion-system of exobiology. Nature 207:9–13. doi:10.1038/207009a0

    Article  ADS  Google Scholar 

  • Leger A, Pirre M, Marceau FJ (1993) Search for primitive life on a distant planet: relevance of 02 and 03 detections. A&A 277:309

    ADS  Google Scholar 

  • Léger A, Mariotti JM, Mennesson B, Ollivier M, Puget JL, Rouan D, Schneider J (1996a) Could we search for primitive life on extrasolar planets in the near future? Icarus 123:249–255. doi:10.1006/icar.1996.0155

    Article  ADS  Google Scholar 

  • Léger A, Mariotti JM, Mennesson B, Ollivier M, Puget JL, Rouan D, Schneider J (1996b) The DARWIN project. Ap&SS 241:135–146. doi:10.1007/BF00644221

    ADS  Google Scholar 

  • Léger A, Selsis F, Sotin C, Guillot T, Despois D, Mawet D, Ollivier M, Labèque A, Valette C, Brachet F, Chazelas B, Lammer H (2004) A new family of planets? “Ocean-Planets”. Icarus 169:499–504. doi:10.1016/j.icarus.2004.01.001, astro-ph/0308324

  • Léger A, Fontecave M, Labeyrie A, Samuel B, Demangeon O, Valencia D (2011) Is the presence of oxygen on an exoplanet a reliable biosignature? Astrobiology 11:335–341. doi:10.1089/ast.2010.0516

    Article  ADS  Google Scholar 

  • Lovelock JE (1965) A physical basis for life detection experiments. Nature 207:568–570. doi:10.1038/207568a0

    Article  ADS  Google Scholar 

  • Martin SR, Booth AJ (2010) Demonstration of exoplanet detection using an infrared telescope array. A&A 520:A96. doi:10.1051/0004-6361/201014942

    Article  ADS  Google Scholar 

  • Martin S, Booth A, Liewer K, Raouf N, Loya F, Tang H (2012) High performance testbed for four-beam infrared interferometric nulling and exoplanet detection. Appl Opt 51:3907–3921. doi:10.1364/AO.51.003907

    Article  ADS  Google Scholar 

  • Martin S, Serabyn G, Liewer K, Mennesson B (2017) Achromatic broadband nulling using a phase grating. Optica 4(1):110–113. doi:10.1364/OPTICA.4.000110, http://www.osapublishing.org/optica/abstract.cfm?URI=optica-4-1-110

  • Maurin AS, Selsis F, Hersant F, Belu A (2012) Thermal phase curves of nontransiting terrestrial exoplanets. II. Characterizing airless planets. A&A 538:A95. doi:10.1051/0004-6361/201117054, 1110.3087

  • Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378:355–359. doi:10.1038/378355a0

    Article  ADS  Google Scholar 

  • Mennesson B, Mariotti JM (1997) Array configurations for a space infrared nulling interferometer dedicated to the search for Earth-like extrasolar planets. Icarus 128:202–212. doi:10.1006/icar.1997.5731

    Article  ADS  Google Scholar 

  • Mennesson B, Ollivier M, Ruilier C (2002) Use of single-mode waveguides to correct the optical defects of a nulling interferometer. J Opt Soc Am A 19:596–602. doi:10.1364/JOSAA.19.000596

    Article  ADS  Google Scholar 

  • Mennesson B, Léger A, Ollivier M (2005) Direct detection and characterization of extra-solar planets: the Mariotti space interferometer. Icarus 178:570–588. doi:10.1016/j.icarus.2005.05.012

    Article  ADS  Google Scholar 

  • Mennesson B, Hanot C, Serabyn E, Liewer K, Martin SR, Mawet D (2011a) High-contrast stellar observations within the diffraction limit at the palomar hale telescope. ApJ 743:178. doi:10.1088/0004-637X/743/2/178

    Article  ADS  Google Scholar 

  • Mennesson B, Serabyn E, Hanot C, Martin SR, Liewer K, Mawet D (2011b) New constraints on companions and dust within a few AU of vega. ApJ 736:14. doi:10.1088/0004-637X/736/1/14

    Article  ADS  Google Scholar 

  • Mennesson B, Millan-Gabet R, Serabyn E, Colavita MM, Absil O, Bryden G, Wyatt M, Danchi W, Defrère D, Doré O, Hinz P, Kuchner M, Ragland S, Scott N, Stapelfeldt K, Traub W, Woillez J (2014) Constraining the exozodiacal luminosity function of main-sequence stars: complete results from the Keck nuller mid-infrared surveys. ApJ 797:119. doi:10.1088/0004-637X/797/2/119

    Article  ADS  Google Scholar 

  • Mennesson B, Gaudi S, Seager S, Cahoy K, Domagal-Goldman S, Feinberg L, Guyon O, Kasdin J, Marois C, Mawet D, Tamura M, Mouillet D, Prusti T, Quirrenbach A, Robinson T, Rogers L, Scowen P, Somerville R, Stapelfeldt K, Stern D, Still M, Turnbull M, Booth J, Kiessling A, Kuan G, Warfield K (2016) The Habitable Exoplanet (HabEx) Imaging Mission: preliminary science drivers and technical requirements. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Proceedings SPIE, vol 9904, p 99040L. doi:10.1117/12.2240457

  • Monnier JD, Ireland MJ, Kraus S, Baron F, Creech-Eakman M, Dong R, Isella A, Merand A, Michael E, Minardi S, Mozurkewich D, Petrov R, Rinehart S, ten Brummelaar T, Vasisht G, Wishnow E, Young J, Zhu Z (2016) Architecture design study and technology road map for the Planet Formation Imager (PFI). In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Proceedings SPIE, vol 9907, p 99071O. doi:10.1117/12.2233311, 1608.00580

  • Moskovitz NA, Gaidos E, Williams DM (2009) The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets. Astrobiology 9:269–277. doi:10.1089/ast.2007.0209, 0810.2069

  • Ollivier M, Absil O, Allard F, Berger JP, Bordé P, Cassaing F, Chazelas B, Chelli A, Chesneau O, Coudé du Foresto V, Defrère D, Duchon P, Gabor P, Gay J, Herwats E, Jacquinod S, Kern P, Kervella P, Le Duigou JM, Léger A, Lopez B, Malbet F, Mourard D, Pelat D, Perrin G, Rabbia Y, Rouan D, Reiss JM, Rousset G, Selsis F, Stee P, Surdej J (2009) PEGASE, an infrared interferometer to study stellar environments and low mass companions around nearby stars. Exp Astron 23:403–434. doi:10.1007/s10686-008-9133-6

    Article  ADS  Google Scholar 

  • Owen T (1980) The search for early forms of life in other planetary systems – future possibilities afforded by spectroscopic techniques. In: Papagiannis MD (ed) Strategies for the search for life in the Universe. Astrophysics and space science library, vol 83, p 177. doi:10.1007/978-94-009-9115-6-17

  • Peters RD, Lay OP, Lawson PR (2010) Mid-infrared adaptive nulling for the detection of Earth-like exoplanets. PASP 122:85–92. doi:10.1086/649850

    Article  ADS  Google Scholar 

  • Quanz SP, Crossfield I, Meyer MR, Schmalzl E, Held J (2015) Direct detection of exoplanets in the 3–10 μm range with E-ELT/METIS. Int J Astrobiol 14:279–289. doi:10.1017/S1473550414000135, 1404.0831

  • Rauer H, Gebauer S, Paris PV, Cabrera J, Godolt M, Grenfell JL, Belu A, Selsis F, Hedelt P, Schreier F, (2011) Potential biosignatures in super-Earth atmospheres. I. Spectral appearance of super-Earths around M dwarfs. A&A 529:A8. doi:10.1051/0004-6361/201014368

  • Rugheimer S, Kaltenegger L, Zsom A, Segura A, Sasselov D (2013) Spectral fingerprints of Earth-like planets around FGK stars. Astrobiology 13:251–269. doi:10.1089/ast.2012.0888, 1212.2638

  • Sagan C, Thompson WR, Carlson R, Gurnett D, Hord C (1993) A search for life on Earth from the Galileo spacecraft. Nature 365:715–721. doi:10.1038/365715a0

    Article  ADS  Google Scholar 

  • Seager S, Bains W (2015) The search for signs of life on exoplanets at the interface of chemistry and planetary science. Sci Adv 1:e1500,047. doi:10.1126/sciadv.1500047

    Article  Google Scholar 

  • Seager S, Turner EL, Schafer J, Ford EB (2005) Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial plants. Astrobiology 5:372–390. doi:10.1089/ast.2005.5.372, astro-ph/0503302

  • Segura A, Krelove K, Kasting JF, Sommerlatt D, Meadows V, Crisp D, Cohen M, Mlawer E (2003) Ozone concentrations and ultraviolet fluxes on Earth-Like planets around other stars. Astrobiology 3:689–708. doi:10.1089/153110703322736024

    Article  ADS  Google Scholar 

  • Segura A, Kasting JF, Meadows V, Cohen M, Scalo J, Crisp D, Butler RAH, Tinetti G (2005) Biosignatures from Earth-like planets around M dwarfs. Astrobiology 5:706–725. doi:10.1089/ast.2005.5.706, astro-ph/0510224

  • Selsis F (2004) The atmosphere of terrestrial exoplanets: detection and characterization. In: Beaulieu J, Lecavelier Des Etangs A, Terquem C (eds) Extrasolar planets: today and tomorrow. Astronomical Society of the Pacific conference series, vol 321, p 170. http://adsabs.harvard.edu/abs/2004ASPC..321..170S

  • Selsis F, Despois D, Parisot JP (2002) Signature of life on exoplanets: can Darwin produce false positive detections? A&A 388:985–1003. doi:10.1051/0004-6361:20020527

    Article  ADS  Google Scholar 

  • Selsis F, Wordsworth RD, Forget F (2011) Thermal phase curves of nontransiting terrestrial exoplanets. I. Characterizing atmospheres. A&A 532:A1. doi:10.1051/0004-6361/201116654, 1104.4763

  • Selsis F, Maurin AS, Hersant F, Leconte J, Bolmont E, Raymond SN, Delbo’ M (2013) The effect of rotation and tidal heating on the thermal lightcurves of super Mercuries. A&A 555:A51. doi:10.1051/0004-6361/201321661, 1305.3858

  • Shao M, Unwin SC, Beichman C, Catanzarite J, Edberg SJ, Marr JC IV, Marcy G (2007) Finding Earth clones with SIM: the most promising near-term technique to detect, find masses for, and determine three-dimensional orbits of nearby habitable planets. In: Techniques and Instrumentation for Detection of Exoplanets III, Proceedings SPIE, vol 6693, p 66930C. doi:10.1117/12.734671, 0704.0952

  • Simoncini E, Virgo N, Kleidon A (2013) Quantifying drivers of chemical disequilibrium: theory and application to methane in the Earth’s atmosphere. Earth Syst Dynam 4:317–331. doi:10.5194/esd-4-317-2013

    Article  ADS  Google Scholar 

  • Snellen IAG, Brandl BR, de Kok RJ, Brogi M, Birkby J, Schwarz H (2014) Fast spin of the young extrasolar planet β Pictoris b. Nature 509:63–65. doi:10.1038/nature13253

    Article  ADS  Google Scholar 

  • Tian F, France K, Linsky JL, Mauas PJD, Vieytes MC (2014) High stellar FUV/NUV ratio and oxygen contents in the atmospheres of potentially habitable planets. Earth Planet Sci Lett 385:22–27. doi:10.1016/j.epsl.2013.10.024

    Article  ADS  Google Scholar 

  • Traub WA, Kaltenegger L, Jucks KW, Turnbull MC (2006) Direct imaging of Earth-like planets from space (TPF-C). In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Proceedings SPIE, vol 6265, p 626502. doi:10.1117/12.676257

  • Velusamy T, Angel RP, Eatchel A, Tenerelli D, Woolf NJ (2003) Single and double Bracewell nulling interferometer in space. In: Fridlund M, Henning T, Lacoste H (eds) Earths: DARWIN/TPF and the search for extrasolar terrestrial planets, vol 539. ESA Special Publication, Noordwijk, pp 631–636

    Google Scholar 

  • von Paris P, Cabrera J, Godolt M, Grenfell JL, Hedelt P, Rauer H, Schreier F, Stracke B (2011) Spectroscopic characterization of the atmospheres of potentially habitable planets: GL 581 d as a model case study. A&A 534:A26. doi:10.1051/0004-6361/201117091, 1108.3670

  • von Paris P, Hedelt P, Selsis F, Schreier F, Trautmann T (2013) Characterization of potentially habitable planets: retrieval of atmospheric and planetary properties from emission spectra. A&A 551:A120. doi:10.1051/0004-6361/201220009, 1301.0217

  • Wallner O, Leeb WR, Winzer PJ (2002) Minimum length of a single-mode fiber spatial filter. J Opt Soc Am A 19:2445–2448. doi:10.1364/JOSAA.19.002445

    Article  ADS  Google Scholar 

  • Weber V, Barillot M, Haguenauer P, Kern PY, Schanen-Duport I, Labeye PR, Pujol L, Sodnik Z (2004) Nulling interferometer based on an integrated optics combiner. In: Traub WA (ed) New Frontiers in Stellar Interferometry, Proceedings of SPIE, vol 5491, p 842

    Google Scholar 

  • Woolf N, Angel JR (1998) Astronomical searches for Earth-like planets and signs of life. ARA&A 36:507–538. doi:10.1146/annurev.astro.36.1.507

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Léger, M. Fridlund, and B. Mennesson for reading and commenting on the manuscript. The authors would also like to thank F. Selsis, H. Rauer, M. Godolt, A. Garcia Munoz, J.L. Grenfell, and F. Tian for providing figures and/or running simulations for Proxima Cen b. This work was partly funded by the European Research Council under the European Union’s Seventh Framework Program (ERC Grant Agreement n. 337569) and by the French Community of Belgium through an ARC grant for Concerted Research Action. Some of research described in this publication was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Defrère .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Defrère, D., Absil, O., Beichman, C. (2017). Interferometric Space Missions for Exoplanet Science: Legacy of Darwin/TPF. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_82-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_82-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics