Advertisement

Stellar Composition, Structure and Evolution: Impact on Habitability

  • Patrick A. Young
Living reference work entry

Abstract

While we can imagine numerous scenarios in which diverse types of planets could support life in exotic conditions, for pragmatic reasons the most attention still goes to an Earth-like situation where a surface or near-subsurface biome is made possible by the presence of liquid water. With few exceptions, by far the most important source of energy determining the planet’s surface conditions is instellation from the host star. This is not a constant quantity over the star’s life. If long-term stability is necessary to support detectable life, then the stellar evolution must be taken into account when determining habitability. Stellar composition in turn has a fundamental effect on stellar evolution. The range of variation in individual elements observed in nearby stars is much larger than what is considered in most stellar modeling and can result in gigayear-scale changes in the evolution of sun-like stars. Measurements of stellar composition can also provide insight into the nature of the planets themselves.

Keywords

Stars Stellar Evolution Stellar Abundances Spectroscopy Astrobiology Habitable Zones 

Notes

Acknowledgments

Some of the results reported herein benefitted from collaborations and/or information exchange within NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA’s Science Mission Directorate.

References

  1. Airapetian VS, Glocer A, Khazanov GV et al (2017) How hospitable are space weather affected habitable zones? The role of ion escape. ApJ 836:L3ADSCrossRefGoogle Scholar
  2. Aleksandrov IV, Goncharov AF, Stishov SM, Yakovenko EV (1989) High-pressure research: application to earth and planetary sciences. J Exp Theor Phys 50:127Google Scholar
  3. Allegre CJ, Poirier JP, Humler E, Hofmann AW (1995) The chemical composition of the Earth. Earth Planet Sci Lett 134:515Google Scholar
  4. Ammann MW, Brodholt JP, Dobson DP (2011) Ferrous iron diffusion in ferro-periclase across the spin transition. E&PSL 302:393Google Scholar
  5. Anbar AD, Duan Y, Lyons TW, et al (2007) A whiff of oxygen before the great oxidation event?. Science 317:1903Google Scholar
  6. Arnett D (1996) Supernovae and nucleosynthesis, Princeton University Press: New JerseyGoogle Scholar
  7. Asplund M, Grevesse N, Sauval AJ, Scott P (2009) The chemical composition of the Sun. Annu Rev Astron Astrophys 47:481–522Google Scholar
  8. Barnes R, Mullins K, Goldblatt C, Meadows VS, Kasting JF, Heller R (2013) Tidal Venuses: triggering a climate catastrophe via tidal heating. Astrobiology 13:225–250ADSCrossRefGoogle Scholar
  9. Barnes R, Meadows VS, Evans N (2015) Comparative habitability of transiting exoplanets. ApJ 814:91Google Scholar
  10. Batalha NM et al (2013) A survey for very short-period planets in the Kepler data. ApJ Supplement 204:24Google Scholar
  11. Bond JC et al (2006) Abundance distribution of stars with planets. MNRAS 370:163Google Scholar
  12. Bond JC et al (2008) Beyond the iron peak: r- and s-process elemental abundances in stars with planets. ApJ 682:1234Google Scholar
  13. Bond JC, OBrien DP, Lauretta DS (2010) The compositional diversity of extrasolar terrestrial planets. I. In situ simulations. ApJ 715:1050Google Scholar
  14. Borucki WJ et al (2010) Kepler planet-detection mission: introduction and first results. Science 327Google Scholar
  15. Caffau E, Ludwig HG, Malherbe JM, Bonifacio P, Steffen M, Monaco L (2013) The photospheric solar oxygen project: III. Investigation of the centre-to-limb variation of the 630 nm [O I]-Ni I blend. A&A 554:126Google Scholar
  16. Caldeira K, Kasting JF (1992) Susceptibility of the early Earth to irreversible glaciation. Nature 359:226Google Scholar
  17. Carter-Bond JC, OBrien DP, Raymond SN (2012) The Compositional Diversity Of Extrasolar Terrestrial Planets. II. Migration simulations. Astrophys J 760:44Google Scholar
  18. Catanzarite J, Shao M (2011) The occurrence rate of Earth analog planets orbiting Sun-like stars. ApJ 738:151Google Scholar
  19. Chandrasekhar S (1939) An introduction to the study of stellar structure. The University of Chicago Press, ChicagoGoogle Scholar
  20. de Bruijne JHJ, Rygl KLJ, Antoja T (2014) EAS Publications Ser. 67, The Milky Way Unravelled by Gaia: GREAT Science from the Gaia Data Releases ed N. Walton et al (Barcelona: EAS Publications Series) 23Google Scholar
  21. de Koker N, Karki BB, Stixrude L (2013) Thermodynamics of the MgO-SiO2 liquid system in. Earth's lower mantle from first principles. E&PSL 361:58Google Scholar
  22. De Silva GM et al (2006) Chemical homogeneity in the hyades. ApJ 151:455Google Scholar
  23. Delgado Mena E, Israelian G, Gonza’lez Herna’ndez JI, Bond JC, Santos NC, Udry S, Mayor M (2010) Chemical clues on the formation of planetary systems: C/O versus Mg/Si for HARPS GTO sample. ApJ 725:2349Google Scholar
  24. Driscoll PE, Barnes R (2015) Tidal heating of Earth-like exoplanets around M stars. Astrobiology 15:739Google Scholar
  25. Fabbian D, Asplund M, Barklem PS, Carlsson M, Kiselman D (2009) Neutral oxygen spectral line formation revisited with new collisional data: large departures from LTE at low metallicity. A&A 500:1221Google Scholar
  26. Gaidos E (2013) Candidate planets in the habitable zones of Kepler stars. ApJ 770:90Google Scholar
  27. González Hernández JI, Israelian G, Santos NC, Sousa S, Delgado-Mena E, Neves V, Udry S (2010) Searching for the signatures of terrestrial planets in solar analogs. ApJ 720:1592Google Scholar
  28. Grocholski B, Shim SH, Prakapenka VB (2013) Stability, metastability, and elastic properties of a dense silica polymorph, seifertite. J Geophys Res (unpublished data)Google Scholar
  29. Hinkel NR, Young PA, Timmes FX, et al (2014) Stellar abundances in the solar neighborhood: the Hypatia catalog. ApJ 148:54Google Scholar
  30. Hinkel NR, Mamajek EE, Turnbull MC, et al (2017) A Catalog of Stellar Unified Properties (CATSUP) for 951 FGK-stars within 30 pc. ApJ 848:34Google Scholar
  31. Hirose K, Takafuji N, Sata N, Ohishi Y (2005) Determination of post-perovskite phase transition boundary in MgSiO3 using Au and MgO pressure standards. Earth Planet Sci Lett 237:239251Google Scholar
  32. Iglesias CA, Rogers FJ (1996) Updated Opal Opacities. ApJ 464:943Google Scholar
  33. Isobe T, Feigelson ED, Akritas MG, Babu GJ (1990) Linear regression in astronomy. ApJ 364:104Google Scholar
  34. Kane SR (2014) Habitable zone dependence on stellar parameter uncertainties. ApJ 782:111Google Scholar
  35. Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101:108Google Scholar
  36. Kopparapu RK, Ramirez RM, SchottelKotte J, et al (2014) ApJL 787:L29Google Scholar
  37. Kopparapu RK, Wolf ET, Haqq-Misra J, et al (2016) The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models. ApJ 819:84Google Scholar
  38. Lammer H, Kasting JF, Chassefie’re E, et al (2008) Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci Rev 139:399Google Scholar
  39. Leconte J, Forget F, Charnay B, et al (2013) 3D climate modeling of close-in land planets: Circulation patterns, climate moist bistability, and habitability. A&A 554:A69Google Scholar
  40. Madhusudhan N, Lee KKM, Mousis O (2012) A possible carbon-rich interior in super-Earth 55 Cancri e. Astrophys J Lett 759:L40Google Scholar
  41. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223Google Scholar
  42. Meynet G, Maeder A (2000) Stellar evolution with rotation. V. Changes in all the outputs of massive star models. A&A 361:101Google Scholar
  43. Mishenina TV, Soubiran C, Bienaymé O, Korotin SA, Belik SI, Usenko IA, Kovtyukh VV (2008) Spectroscopic investigation of stars on the lower main sequence. A&A 489:923Google Scholar
  44. Neves V, Santos NC, Sousa SG, Correia ACM, Israelian G (2009) Chemical abundances of 451 stars from the HARPS GTO planet search program. A&A 497:563Google Scholar
  45. Nissen PE (2013) The carbon-to-oxygen ratio in stars with planets. A&A 552:73Google Scholar
  46. Oishi M, Kamaya H (2016) A simple evolutional model of the UV habitable zone and the possibility of persistent life existence: the effects of mass and metallicity. Astrophys Space Sci 361(2):1–6Google Scholar
  47. Pagano MD, Young PA, Challa P (2017) The elemental abundances of 518 FGK stars and planetary implications. ApJ in reviewGoogle Scholar
  48. Petigura EA, Howard AW, Marcy GW (2013) Prevalence of Earth-size planets orbiting Sun-like stars. PNAS 110Google Scholar
  49. Ramírez I, Allende Prieto C, Lambert DL (2007) Oxygen abundances in nearby stars. A&A 465:271Google Scholar
  50. Reiners A (2012) Observations of cool-star magnetic fields. Living Rev Sol Phys 9:1Google Scholar
  51. Ricolleau A, Fiquet G, Addad A, Menguy N, Vanni C, Perrillat JP, Daniel I, Cardon H, Guignot N (2008) Analytical transmission microscopy study of a natural MORB sample assemblage transformed at high pressure and high temperature. Am Mineral 93:144153Google Scholar
  52. Ringwood AE (1966) Advances in Earth science. MIT Press, Boston, pp 287–356Google Scholar
  53. Rogers FJ, Swenson FJ, Iglesias CA (1996) OPAL equation-of-state tables for astrophysical applications. ApJ 456:902Google Scholar
  54. Seager S, Kuchner M, Hier-Majumder CA, Militzer B (2007) Mass-radius relationships for solid exoplanets. ApJ 699:1297Google Scholar
  55. Sen S Widgeon SJ Navrotsky A Mera G, Tavakoli A, Ionescu E, Riedelc R (2013) Carbon substitution for oxygen in silicates in planetary interiors. Proc Natl Acad Sci 110(40):15904Google Scholar
  56. Shields AL, Bitz CM, Meadows VS, Joshi MM, Robinson TD (2014) Differences IN water vapor radiative transfer among 1D models can significantly affect the inner edge of the habitable zone. ApJ 785:L9Google Scholar
  57. Shkolnik EL, Llama J (2017) Signatures of star-planet interactions. arXiv:1712.02814Google Scholar
  58. Stishov SM, Popova SV (1961) Geokhimiya 10:837839Google Scholar
  59. Stuart A, Ord K (2009) Kendall’s advanced theory of statistics, volume 1: distribution theory. Wiley, New JerseyGoogle Scholar
  60. Takeda Y (2007) Fundamental parameters and elemental abundances of 160 F–G–K stars based on OAO spectrum database. PASJ 59:335Google Scholar
  61. Truitt A, Young PA (2017) Expanding the catalog: considering the importance of carbon, magnesium, and neon in the evolution of stars and habitable zones. ApJ 835:87ADSCrossRefGoogle Scholar
  62. Truitt A, Young PA, Spacek A, et al (2015) A catalog of stellar evolution profiles and the effects of variable composition on habitable systems. ApJ 804:145Google Scholar
  63. Unterborn CT, Kabbes JE, Pigott J, Reaman D, Panero WR (2013) The role of carbon in extrasolar planetary geodynamics and habitability (N.B. correct reference ApJ 793, 194). ApJ arXiv:1311.0024v3Google Scholar
  64. Valle G, Dell’Omodarme M, Prada Moroni PG, et al (2014) Uncertainties in grid-based estimates of stellar mass and radius. SCEPtER: Stellar CharactEristics Pisa Estimation gRid. A&A 567:A133Google Scholar
  65. Wolf ET, Shields AL, Kopparapu RK, Haqq-Misra J, Toon OB (2017) Constraints on climate and habitability for Earth-like exoplanets determined from a general circulation model. ApJ 837:107Google Scholar
  66. Yoshida M, Onodera A, Ueno M, Takemura K, Shimomura O (1993) Pressure-induced phase transition in SiC. Phys Rev B 48:1058710590Google Scholar
  67. Young PA, Liebst K, Pagano M (2012) THE impact of stellar abundance variations on stellar habitable zone evolution. ApJ 755:31Google Scholar
  68. Young PA, Desch SJ, Anbar AD et al (2014) Astrobiological stoichiometry. Astrobiology 14:603Google Scholar
  69. Zahnle KJ, Catling DC (2017) The cosmic shoreline: the evidence that escape determines which planets have atmospheres, and what this may mean for Proxima Centauri B. ApJ 843:122Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.School of Earth and Space ExplorationArizona State UniversityTempeUSA

Section editors and affiliations

  • Victoria Meadows
    • 1
  • Rory Barnes
    • 2
  1. 1.Astronomy DepartmentUniversity of WashingtonSeattleUSA
  2. 2.Astronomy DepartmentUniversity of WashingtonSeattleUSA

Personalised recommendations