Skip to main content

Atmospheric Dynamics of Giants and Icy Planets

  • Living reference work entry
  • First Online:
Book cover Handbook of Exoplanets
  • 489 Accesses

Abstract

We present the state of knowledge of the dynamics of the atmospheres of the gas giants (Jupiter and Saturn) and ice giants (Uranus and Neptune), describing their general circulation, the most relevant atmospheric phenomena, and the models developed so far to explain their atmospheric dynamics. Observations show that these two types of fluid and cold planets differ in their general circulation at cloud level. Jupiter and Saturn are dominated by a jet system that alternates in their direction with latitude, and both possess an intense eastward equatorial jet. On the other hand, Uranus and Neptune show a dominating intense and wide in latitude westward jet symmetric with respect to the equator. In spite of this difference, the four planets present similar atmospheric dynamical phenomena (large-scale vortices, storms, and long waves, among others). Deep convection models have shown that turbulent convection resulting in angular momentum mixing may explain the westward (retrograde) equatorial flow on the ice giants. The jet systems of Jupiter and Saturn have been successfully reproduced using deep convection and shallow forcing models. However, the prograde equatorial flow of the gas giants is more naturally reproduced with deep models or hybrid shallow models incorporating aspects of deeper forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allison M, Beebe RF, Conrath BJ, Hinson DP, Ingersoll AP (1991) Uranus atmospheric dynamics and circulation. In: Bergstralh J, Miner E (eds) Uranus. University of Arizona Press, Tucson, pp 253–295

    Google Scholar 

  • Antuñano A, del Rio-Gaztelurrutia T, Sánchez-Lavega A, Hueso R (2015) Dynamics of Saturn’s polar regions. J Geophys Res-Planets 120:155–176

    Article  ADS  Google Scholar 

  • Atkinson DH, Pollack JB, Seiff A (1998) The Galileo probe Doppler wind experiment: measurement of the deep zonal winds on Jupiter. J Geophys Res 103:22911–22928

    Article  ADS  Google Scholar 

  • Atreya AK, Wong AH (2005) Coupled clouds and chemistry of the Giant planets – a case for multiprobes. Space Sci Rev 116:121–136. https://doi.org/10.1007/s11214-005-1951-5

    Article  ADS  Google Scholar 

  • Aurnou JM, Heimpel M, Wicht J (2007) The effects of vigorous mixing in a convective model of zonal flow on the ice giants. Icarus 190(1):110–126

    Article  ADS  Google Scholar 

  • Aurnou JM, Heimpel M (2004) Zonal jets in rotating convection with mixed mechanical boundary conditions. Icarus 169:492–498

    Article  ADS  Google Scholar 

  • Baines KH, Hammel HB, Rages KA, Romani PN, Samuelson RE (1995) Clouds and hazes in the atmosphere of Neptune. In: Cruikshank DP (ed) Neptune and triton. University of Arizona Press, Tucson, pp 613–682

    Google Scholar 

  • Bolton SJ, Adriani A, Adumitroaie V, Anderson J, Atreya S, Bloxham J, Brown S, Connerney JEP, DeJong E, Folkner W, Gautier D, Gulkis S, Guillot T, Hansen C, Hubbard WB, Iess L, Ingersoll A, Janssen M, Jorgensen J, Kaspi Y, Levin SM, Li C, Lunine J, Miguel Y, Orton G, Owen T, Ravine M, Smith E, Steffes P, Stone E, Stevenson D, Thorne R, Waite J (2017) Jupiter’s interior and deep atmosphere: the first close polar pass with the Juno spacecraft. Science 356:821-825

    Google Scholar 

  • Busse FH (1970) Thermal instabilities in rapidly rotating systems. J Fluid Mech 44(03):441–460

    Article  ADS  MATH  Google Scholar 

  • Busse FH (1976) A simple model of convection in the jovian atmosphere. Icarus 20:255–260

    Article  ADS  Google Scholar 

  • Cabanes S, Aurnou J, Favier B, Le Bars M (2017) A laboratory model for deep-seated jets on the gas giants. Nat Phys 13:387-390

    Google Scholar 

  • Cho JYK, Polvani LM (1996) The morphogenesis of bands and zonal winds in the atmospheres on the giant outer planets. Science 273:335–337

    Article  ADS  Google Scholar 

  • Choi DS, Showman AP, Brown RH (2009) Cloud features and zonal wind measurements of Saturn’s atmosphere as observed by Cassini/VIMS. Journal of Geophysical Research (Planets) 114:4007

    Article  ADS  Google Scholar 

  • Christensen UR (2001) Zonal flow driven by deep convection on the major planets. Geophys Res Lett 28:2553–2556

    Article  ADS  Google Scholar 

  • Christensen UR (2007) Zonal flow driven by strongly supercritical convection in rotating spherical shells. J Fluid Mech 470(115–133):2002

    MathSciNet  Google Scholar 

  • Connerney JEP (2007) Planetary magnetism. In: Schubert G (ed) Treatise on geophysics, vol 20. Elsevier, Amsterdam, pp 243–280

    Chapter  Google Scholar 

  • de Pater I, Sromovsky L, Fry PM, Hammel HB, Baranec C, Sayanagi K (2015) Record-breaking storm activity on Uranus in 2014. Icarus 252:121–128

    Article  ADS  Google Scholar 

  • del Genio AD, Achterberg RK, Baines KH, Flasar FM, Read PL, Sánchez-Lavega A, Showman AP (2009) Chapter 6: Saturn atmospheric structure and dynamics. In: Dougherty M, Esposito L, Krimigis T (eds) Saturn after Cassini-Huygens. Springer, Dordrecht, pp 113–159

    Chapter  Google Scholar 

  • Dobbs-Dixon I, Lin D (2008) Atmospheric dynamics of short-period extrasolar gas giant planets. i. Dependence of nightside temperature on opacity. Astrophys J 673(1):513

    Article  ADS  Google Scholar 

  • Duarte LD, Gastine T, Wicht J (2013) Anelastic dynamo models with variable electrical conductivity: an application to gas giants. Phys Earth Planet Inter 222:22–34

    Article  ADS  Google Scholar 

  • Dowling TE, Ingersoll AP (1988) Potential vorticity and layer thickness variations in the flow around Jupiter’s great red spot and white oval BC. J Atmos Sci 45:1380–1396

    Article  ADS  Google Scholar 

  • Fletcher LN, Irwin PGJ, Achterberg RK, Orton GS, Flasar FM (2016a) Seasonal variability of Saturn’s tropospheric temperatures, winds and para-H2 from Cassini far-IR spectroscopy. Icarus 264:137–159

    Article  ADS  Google Scholar 

  • Fletcher LN, Greathouse TK, Orton GS, Sinclair JA, Giles RS, Irwin PGJ (2016b) Mid-infrared mapping of Jupiter’s temperatures, aerosol opacity and chemical distributions with IRTF/TEXES. Icarus 278:128–161

    Article  ADS  Google Scholar 

  • Fouchet T et al (2008) An equatorial oscillation in Saturn’s middle atmosphere. Nature 453:200–202

    Article  ADS  Google Scholar 

  • French M, Becker A, Lorenzen W, Nettelmann N, Bethkenhagen M, Wicht J, Redmer R (2012) Ab initio simulations for material properties along the jupiter adiabat. Astrophysical J Suppl Series 202(1):5–15

    Article  ADS  Google Scholar 

  • García-Melendo E, Sánchez-Lavega A (2001) A study of the stability of Jovian zonal winds from HST images: 1995–2000. Icarus 152:316–330

    Article  ADS  Google Scholar 

  • García-Melendo E, Pérez-Hoyos S, Sánchez-Lavega A, Hueso R (2011) Saturn’s zonal wind profile in 2004 - 2009 from Cassini ISS images and its long-term variability. Icarus 215:62–74

    Article  ADS  Google Scholar 

  • Gastine T, Wicht J (2012) Effects of compressibility on driving zonal flow in gas giants. Icarus 219(1):428–442

    Article  ADS  Google Scholar 

  • Gastine T, Wicht J, Aurnou JM (2013) Zonal flow regimes in rotating anelastic spherical shells: an application to giant planets. Icarus 225:156–172

    Article  ADS  Google Scholar 

  • Gastine T, Heimpel M, Wicht J (2014a) Zonal flow scaling in rapidly-rotating compressible convection. Phys Earth Planet Inter 232:36–50

    Article  ADS  Google Scholar 

  • Gastine T, Wicht J, Duarte L, Heimpel M, Becker A (2014b) Explaining jupiter’s mag netic field and equatorial jet dynamics. Geophys Res Lett 41(15):5410–5419

    Article  ADS  Google Scholar 

  • Guillot T, Stevenson DJ, Hubbard W, Saumon D (2004) The interior of jupiter. In: Bagenal F, Dowling T, McKinnon W (eds) Jupiter, the planet, satellites and magnetosphere. Cambridge University Press, Cambridge, pp 35–67

    Google Scholar 

  • Hanel RA, Conrath BJ, Herath LW, Kunde VG, Pirraglia JA (1981) Journal Geophysical Research 86:8705–8712

    Article  ADS  Google Scholar 

  • Heimpel M, Aurnou J (2007) Turbulent convection in rapidly rotating spherical shells: a model for equatorial and high latitude jets on jupiter and saturn. Icarus 187(2):540–557

    Article  ADS  Google Scholar 

  • Heimpel M, Gómez Pérez N (2011) On the relationship between zonal jets and dynamo action in giant planets. Geophys Res Lett 38(14):14201–14206

    Article  ADS  Google Scholar 

  • Heimpel M, Aurnou J, Wicht J (2005) Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438:193–196

    Article  ADS  Google Scholar 

  • Heimpel M, Gastine T, Wicht J (2016) Simulation of deep-seated zonal jets and shallow vortices in gas giant atmospheres. Nat Geosci 9:19–23

    Article  ADS  Google Scholar 

  • Hueso R, Sánchez-Lavega A (2001) A three-dimensional model of moist convection for the giant planets: the Jupiter case. Icarus 151:257–274

    Article  ADS  Google Scholar 

  • Hueso R, Sánchez Lavega A, Guillot T (2002) A model for large scale convective storms in Júpiter. Journal Geophsical Research-Planets 107(10):5/1–5/11

    Google Scholar 

  • Hueso R, Sánchez-Lavega A (2004) A three – dimensional model of moist convection for the Giant planets II: Saturn’s water and ammonia moist convective storms. Icarus 172:255–271

    Article  ADS  Google Scholar 

  • Holme R, Bloxham J (1996) The magnetic fields of uranus and neptune: methods and models. Journal of Geophysical Research: Planets 101(E1):2177–2200

    Article  Google Scholar 

  • Ingersoll AP, Barnet CD, Beebe RF, Flasar FM, Hinson DP, Limaye SS, Sromovsky LA, Suomi VE (1995) Dynamic meteorology of Neptune. In: Cruikshank DP (ed) Neptune and triton. University of Arizona Press, Tucson, pp 613–682

    Google Scholar 

  • Ingersoll AP, Dowling TE, Gierasch PJ, Orton GS, Read PL, Sanchez-Lavega A, Showman AP, Simon-Miller AA, Vasavada AR (2004) Chapter 6: dynamics of Jupiter’s atmosphere. In: Bagenal F, McKinnon W, Dowling T (eds) Jupiter: the planet, satellites & magnetosphere. Cambridge University Press, Cambridge, pp 105–128

    Google Scholar 

  • Ingersoll A (1976) Pioneer 10 and 11 observations and the dynamics of jupiter’s atmosphere. Icarus 29(2):245–253

    Article  ADS  Google Scholar 

  • Jones CA, Kuzanyan KM (2009) Compressible convection in the deep atmospheres of giant planets. Icarus 204:227–238

    Article  ADS  Google Scholar 

  • Karkoschka E (2015) Uranus’ southern circulation revealed by voyager 2: unique characteristics. Icarus 250:294–307

    Article  ADS  Google Scholar 

  • Kaspi Y, Flierl GR, Showman AP (2009) The deep wind structure of the giant planets: results from an anelastic general circulation model. Icarus 202:525–542

    Article  ADS  Google Scholar 

  • Lian Y, Showman AP (2010) Generation of equatorial jets by large-scale latent heating on the giant planets. Icarus 207(1):373–393

    Article  ADS  Google Scholar 

  • Limaye SS (1986) Jupiter - new estimates of the mean zonal flow at the cloud level. Icarus 65:335–352

    Article  ADS  Google Scholar 

  • Liu J, Goldreich PM, Stevenson DJ (2008) Constraints on deep-seated zonal winds inside Jupiter and Saturn. Icarus 196(2):653–664

    Article  ADS  Google Scholar 

  • Nellis WJ, Weir ST, Mitchell AC (1996) Metallization and electrical conductivity of hydrogen in jupiter. Science 273:936–938

    Article  ADS  Google Scholar 

  • Nettelmann N, Holst B, Kietzmann A, French M, Redmer R, Blaschke D (2008) Ab initio equation of state data for hydrogen, helium, and water and the internal structure of jupiter. Astrophys J 683(2):1217–1228

    Article  ADS  Google Scholar 

  • Norwood P, Moses J, Fletcher LN, Orton G, Irwin PGJ, Atreya S, Rages K, Cavalié T, Sánchez-Lavega A, Hueso R (2016) Giant planet observations with the James Webb space telescope. Pub Astron Soc Pacific 128:018005

    Article  ADS  Google Scholar 

  • Orton GS, Friedson AJ, Caldwell J, Hammel HB, Baines KH, Bergstrahl JT et al (1991) Thermal maps of Jupiter: spatial organisation and time-dependence of stratospheric temperature, 1980 to 1990. Science 252:537–542

    Article  ADS  Google Scholar 

  • Pérez-Hoyos S, Sánchez-Lavega A (2006) On the vertical wind shear of Saturn’s equatorial jet at cloud level. Icarus 180(1):161–175

    Article  ADS  Google Scholar 

  • Pirraglia J (1984) Meridional energy balance of jupiter. Icarus 59(2):169–176

    Article  ADS  Google Scholar 

  • Porco CC, West RA, McEwen A, Del Genio AD, Ingersoll AP, Thomas P, Squyres S, Dones L, Murray CD, Johnson TV, Burns JA, Brahic A, Neukum G, Veverka J, Barbara JM, Denk T, Evans M, Ferrier JJ, Geissler P, Helfenstein P, Roatsch T, Throop H, Tiscareno M, Vasavada AR (2003) Cassini imaging of Jupiter’s atmosphere, satellites, and rings. Science 299:1541–1547

    Article  ADS  Google Scholar 

  • Read PL (2004) Jupiter’s and saturn’s convectively driven banded jets in the laboratory. Geophys Res Lett 31. https://doi.org/10.1029/GL020106

  • Rogers JH (1995) The giant planet Jupiter. Cambridge Univ Press, Cambridge, UK

    Google Scholar 

  • Sánchez-Lavega A, Rojas JF, Sada PV (2000) Saturn’s zonal winds at cloud level. Icarus 147:405–420

    Article  ADS  Google Scholar 

  • Sánchez-Lavega A, Orton GS, Hueso R, García-Melendo E, Pérez-Hoyos S, Simon-Miller A, Rojas JF, Gómez JM, Yanamandra-Fisher P, Fletcher L, Joels J, Kemerer J, Hora J, Karkoschka E, de Pater I, Wong MH, Marcus PS, Pinilla-Alonso N, Carvalho F, Go C, Parker D, Salway M, Valimberti M, Wesley A, Pujiv Z (2008) Depth of a strong jovian jet from a planetary-scale disturbance driven by storms. Nature 451:437–440

    Article  ADS  Google Scholar 

  • Sánchez-Lavega A, del Río-Gaztelurrutia T, Hueso R, Gómez-Forrellad JM, Sanz-Requena JF, Legarreta J, García-Melendo E, Colas F, Lecacheux J, Fletcher LN, Barrado-Navascués D, Parker D, the International Outer PlanetWatch Team (2011) Deep winds beneath Saturn’s upper clouds from a seasonal long-lived planetary-scale storm. Nature 475:71–74. https://doi.org/10.1038/nature10203

    Article  ADS  Google Scholar 

  • Sánchez-Lavega A (2011) An introduction to planetary atmospheres. Taylor & Francis/CRC Press, Boca Raton. 696 pp

    Google Scholar 

  • Sánchez-Lavega A, Fisher G, Fletcher LN, Garcia-Melendo E, Hesman B, Perez-Hoyos S, Sayanagi K, Sromovsky L (2016) Chapter 13: The Great Storm of 2010–2011. In: Baines KH, Flasar FM, Krupp N, Stallard TS (eds) Saturn in the 21st Century. Cambridge University Press, Cambridge. (in the press) https://arxiv.org/abs/1611.07669

    Google Scholar 

  • Sánchez-Lavega A, Sromovsky L, Showman A, Del Genio A, Young R, Hueso R, García Melendo E, Kaspi Y, Orton GS, Barrado-Izagirre N, Choi D, Barbara J (2017) Zonal Jets in Gas Giants. In: Galperin B, Read P, ISSI (eds) Zonal Jets. Cambridge University Press. (in the press), Cambridge

    Google Scholar 

  • Sayanagi K, Dyudina UA, Ewald SP, Fisher G, Ingersoll AP, Kurth WS, Muro GD, Porco CC, West RA (2013) Dynamics of Saturn’s great storm of 2010–2011 from Cassini ISS and RPWS. Icarus 223:460–478

    Article  ADS  Google Scholar 

  • Sayanagi K, Baines KH, Dyudina U, Fletcher LN, Sánchez-Lavega A, West RA (2016) Chapter12. Saturn’s Polar Atmosphere. In: Baines KH, Flasar FM, Krupp N, Stallard TS (eds) Saturn in the 21st Century. Cambridge University Press, Cambridge. (in the press).arXiv_1609.09626v2

    Google Scholar 

  • Schneider T, Liu J (2009) Formation of jets and equatorial superrotation on Jupiter. J Atmos Sci 66:579–601

    Article  ADS  Google Scholar 

  • Scott R, Polvani LM (2008) Equatorial superrotation in shallow atmospheres. Geophys Res Lett 35(24):24202–24206

    Article  ADS  Google Scholar 

  • Showman AP (2007) Numerical simulations of forced shallow-water turbulence: effects of moist convection on the large-scale circulation of Jupiter and Saturn. J Atmos Sci 64(9):3132–3157

    Article  ADS  Google Scholar 

  • Showman AP, Polvani LM (2011) Equatorial superrotation on tidally locked exoplanets. Astrophys J 738(1):71

    Article  ADS  Google Scholar 

  • Soderlund K, Heimpel M, King E, Aurnou J (2013) Turbulent models of ice giant internal dynamics: dynamos, heat transfer, and zonal flows. Icarus 224(1):97–113

    Article  ADS  Google Scholar 

  • Sromovsky LA, de Pater I, Fry PM, Hammel HB, Marcus P (2015) High S/N keck and Gemini AO imaging of Uranus during 2012–2014: new cloud patterns, increasing activity, and improved wind measurements. Icarus 258:192–223

    Article  ADS  Google Scholar 

  • Vallis GK (2006) Atmospheric and oceanic fluid dynamics: fundamentals and large-scale cir- culation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • West RA, Baines KH, Karkoschka E, Sánchez-Lavega A (2009) Chapter 7: clouds and aerosols in Saturn’s atmosphere. In: Dougherty M, Esposito L, Krimigis T (eds) Saturn after Cassini-Huygens. Springer, pp 161–179

    Google Scholar 

  • Williams GP (1978) Planetary circulations: 1. Barotropic representation of jovian and terrestrial turbulence. J Atmos Sci 35(8):1399–1426

    Article  ADS  Google Scholar 

  • Zhang K (1992) Spiralling columnar convection in rapidly rotating spherical fluid shells. J Fluid Mech 236:535–556

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

A.S.-L. research is supported by the Spanish project AYA2015-65041-P with FEDER support, Grupos Gobierno Vasco IT-765-13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sánchez-Lavega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Sánchez-Lavega, A., Heimpel, M. (2017). Atmospheric Dynamics of Giants and Icy Planets. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_51-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_51-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics