Tidal Star-Planet Interactions: A Stellar and Planetary Perspective

Living reference work entry


Since 22 years, more than 3600 exoplanets have now been discovered in 2700 planetary systems, among which 610 host several planets. These discoveries reveal us a large diversity of planets, from super-Earths to hot Jupiters, orbiting host stars of different masses, ages, and metallicities. Moreover, the detected exoplanetary systems present a broad variety of orbital architectures that shows that the solar system is not typical. In addition, some of the detected telluric planets orbit within the habitable zone of their host stars. This challenges our understanding of the formation, the evolution, and the stability of planetary systems. In this context, tidal interactions should be coherently modeled taking advantage of the different observational signatures they have in our Earth-Moon system, in the solar system, and in exoplanetary systems. They reveal how tidal dissipation in celestial bodies varies strongly as a function of their internal structure and dynamics. In this chapter, we make a complete review of the physical mechanisms driving tidal friction in stars, giant planets, and telluric planets. For each type of celestial bodies, we discussed in details the state of the art of their modeling and how the resulting predictions compare to observations. We show the importance to adopt a stellar and planetary physicist perspective when studying tidal dissipation in planetary systems.



Stéphane Mathis acknowledges funding by the European Research Council through ERC grant SPIRE 647383 and thanks ISSI for its support to the Encelade 200 team.


  1. Albrecht S, Winn JN, Johnson JA et al (2012) Obliquities of hot Jupiter host stars: evidence for tidal interactions and primordial misalignments. ApJ 757:18. doi:10.1088/0004-637X/757/1/18, 1206.6105
  2. Andrade ENDC (1910) On the viscous flow in metals, and allied phenomena. Proc R Soc Lond Ser A 84:1–12ADSCrossRefGoogle Scholar
  3. André Q, Barker AJ, Mathis S (2017) Layered semi-convection and tides in giant planet interiors – I. Propagation of internal waves. ArXiv e-prints 1704.08974Google Scholar
  4. Anglada-Escudé G, Amado PJ, Barnes J et al (2016) A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536:437–440. doi:10.1038/nature19106, 1609.03449
  5. Arras P, Socrates A (2010) Thermal tides in fluid extrasolar planets. ApJ 714:1–12. doi:10.1088/0004-637X/714/1/1, 0912.2313
  6. Auclair-Desrotour P, Le Poncin-Lafitte C, Mathis S (2014) Impact of the frequency dependence of tidal Q on the evolution of planetary systems. A&A 561:L7. doi:10.1051/0004-6361/201322782, 1311.4810
  7. Auclair Desrotour P, Mathis S, Le Poncin-Lafitte C (2015) Scaling laws to understand tidal dissipation in fluid planetary regions and stars I. Rotation, stratification and thermal diffusivity. A&A 581:A118. doi:10.1051/0004-6361/201526246, 1506.07705
  8. Auclair-Desrotour P, Laskar J, Mathis S (2017a) Atmospheric tides in Earth-like planets. A&A 603:A107ADSCrossRefGoogle Scholar
  9. Auclair-Desrotour P, Laskar J, Mathis S, Correia A (2017b) The rotation of planets hosting atmospheric tides: from Venus to habitable super-Earths. A&A 603:A108ADSCrossRefGoogle Scholar
  10. Baraffe I (2005) Structure and evolution of giant planets. Space Sci Rev 116:67–76. doi:10.1007/s11214-005-1948-0 ADSCrossRefGoogle Scholar
  11. Baraffe I, Chabrier G, Fortney J, Sotin C (2014) Planetary internal structures. Protostars and planets VI, pp 763–786. doi:10.2458/azu_uapress_9780816531240-ch033, 1401.4738
  12. Barker AJ (2016) Non-linear tides in a homogeneous rotating planet or star: global simulations of the elliptical instability. MNRAS 459:939–956. doi:10.1093/mnras/stw702, 1603.06840
  13. Barker AJ, Lithwick Y (2013) Non-linear evolution of the tidal elliptical instability in gaseous planets and stars. MNRAS 435:3614–3626. doi:10.1093/mnras/stt1561, 1309.0107
  14. Barker AJ, Lithwick Y (2014) Non-linear evolution of the elliptical instability in the presence of weak magnetic fields. MNRAS 437:305–315. doi:10.1093/mnras/stt1884, 1309.0108
  15. Barker AJ, Ogilvie GI (2009) On the tidal evolution of hot Jupiters on inclined orbits. MNRAS 395:2268–2287. doi:10.1111/j.1365-2966.2009.14694.x, 0902.4563
  16. Barker AJ, Ogilvie GI (2010) On internal wave breaking and tidal dissipation near the centre of a solar-type star. MNRAS 404:1849–1868. doi:10.1111/j.1365-2966.2010.16400.x, 1001.4009
  17. Barker AJ, Dempsey AM, Lithwick Y (2014) Theory and simulations of rotating convection. ApJ 791:13. doi:10.1088/0004-637X/791/1/13, 1403.7207
  18. Barnes R, Raymond SN, Jackson B, Greenberg R (2008) Tides and the evolution of planetary habitability. Astrobiology 8:557–568. doi:10.1089/ast.2007.0204, 0807.0680
  19. Barnes R, Jackson B, Greenberg R, Raymond SN (2009) Tidal limits to planetary habitability. ApJ 700:L30–L33. doi:10.1088/0004-637X/700/1/L30, 0906.1785
  20. Baruteau C, Rieutord M (2013) Inertial waves in a differentially rotating spherical shell. J Fluid Mech 719:47–81. doi:10.1017/jfm.2012.605, 1203.4347
  21. Bierson CJ, Nimmo F (2016) A test for Io’s magma ocean: modeling tidal dissipation with a partially molten mantle. J Geophys Res (Planets) 121:2211–2224. doi:10.1002/2016JE005005 ADSCrossRefGoogle Scholar
  22. Bolmont E, Mathis S (2016) Effect of the rotation and tidal dissipation history of stars on the evolution of close-in planets. Celest Mech Dyn Astron 126:275–296. doi:10.1007/s10569-016-9690-3, 1603.06268
  23. Bolmont E, Raymond SN, Leconte J, Matt SP (2012) Effect of the stellar spin history on the tidal evolution of close-in planets. A&A 544:A124. doi:10.1051/0004-6361/201219645, 1207.2127
  24. Borucki WJ (2016) KEPLER mission: development and overview. Rep Prog Phys 79(3):036901. doi:10.1088/0034-4885/79/3/036901 ADSCrossRefGoogle Scholar
  25. Braviner HJ, Ogilvie GI (2014) Tidal interactions of a Maclaurin spheroid – I. Properties of free oscillation modes. MNRAS 441:2321–2345. doi:10.1093/mnras/stu704, 1404.2461
  26. Braviner HJ, Ogilvie GI (2015) Tidal interactions of a Maclaurin spheroid – II. Resonant excitation of modes by a close, misaligned orbit. MNRAS 447:1141–1153. doi:10.1093/mnras/stu2521, 1412.2514
  27. Brun AS, García RA, Houdek G, Nandy D, Pinsonneault M (2015) The solar-stellar connection. Space Sci Rev 196:303–356. doi:10.1007/s11214-014-0117-8, 1503.06742
  28. Bryan GH (1889) The waves on a rotating liquid spheroid of finite ellipticity. Philos Trans R Soc Lond A 180:187–219. doi:10.1098/rsta.1889.0006 ADSCrossRefMATHGoogle Scholar
  29. Cébron D, Bars ML, Gal PL et al (2013) Elliptical instability in hot Jupiter systems. Icarus 226:1642–1653. doi:10.1016/j.icarus.2012.12.017, 1309.1624
  30. Chabrier G, Baraffe I (2007) Heat transport in giant (Exo) planets: a new perspective. ApJ 661:L81–L84. doi:10.1086/518473,astro-ph/0703755
  31. Chapman S, Lindzen R (1970) Atmospheric tides. Thermal and gravitational. Reidel, DordrechtGoogle Scholar
  32. Charnoz S, Crida A, Castillo-Rogez JC et al (2011) Accretion of Saturn’s mid-sized moons during the viscous spreading of young massive rings: solving the paradox of silicate-poor rings versus silicate-rich moons. Icarus 216:535–550. doi:10.1016/j.icarus.2011.09.017, 1109.3360
  33. Chernov SV, Papaloizou JCB, Ivanov PB (2013) Dynamical tides excited in rotating stars of different masses and ages and the formation of close in orbits. MNRAS 434:1079–1097. doi:10.1093/mnras/stt1042, 1306.2041
  34. Correia ACM, Laskar J (2001) The four final rotation states of Venus. Nature 411:767–770. doi:10.1038/35081000 ADSCrossRefGoogle Scholar
  35. Correia ACM, Levrard B, Laskar J (2008) On the equilibrium rotation of Earth-like extra-solar planets. A&A 488:L63–L66. doi:10.1051/0004-6361:200810388, 0808.1071
  36. Cunha D, Correia ACM, Laskar J (2015) Spin evolution of Earth-sized exoplanets, including atmospheric tides and core-mantle friction. Int J Astrobiol 14:233–254. doi:10.1017/S1473550414000226, 1406.4544
  37. Damiani C, Lanza AF (2015) Evolution of angular-momentum-losing exoplanetary systems. Revisiting darwin stability. A&A 574:A39. doi:10.1051/0004-6361/201424318, 1411.3802
  38. Dermott SF (1979) Tidal dissipation in the solid cores of the major planets. Icarus 37:310–321ADSCrossRefGoogle Scholar
  39. Dobrovolskis AR, Ingersoll AP (1980) Atmospheric tides and the rotation of Venus. I – tidal theory and the balance of torques. Icarus 41:1–17. doi:10.1016/0019-1035(80)90156-6 Google Scholar
  40. Efroimsky M (2012) Tidal dissipation compared to seismic dissipation: in small bodies, Earths, and super-Earths. ApJ 746:150. doi:10.1088/0004-637X/746/2/150, 1105.3936
  41. Efroimsky M, Lainey V (2007) Physics of bodily tides in terrestrial planets and the appropriate scales of dynamical evolution. J Geophys Res (Planets) 112:E12003. doi:10.1029/2007JE002908, 0709.1995
  42. Egbert GD, Ray RD (2003) Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophys Res Lett 30:1907. doi:10.1029/2003GL017676 ADSCrossRefGoogle Scholar
  43. Favier B, Barker AJ, Baruteau C, Ogilvie GI (2014) Non-linear evolution of tidally forced inertial waves in rotating fluid bodies. MNRAS 439:845–860. doi:10.1093/mnras/stu003, 1401.0643
  44. Fuller J (2014) Saturn ring seismology: evidence for stable stratification in the deep interior of Saturn. Icarus 242:283–296. doi:10.1016/j.icarus.2014.08.006, 1406.3343
  45. Fuller J, Luan J, Quataert E (2016) Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems. MNRAS 458:3867–3879. doi:10.1093/mnras/stw609, 1601.05804
  46. Gallet F, Charbonnel C, Amard L et al (2017) Impacts of stellar evolution and dynamics on the habitable zone: the role of rotation and magnetic activity. A&A 597:A14. doi:10.1051/0004-6361/201629034, 1608.06772
  47. Gaulme P, Mosser B, Schmider FX, Guillot T, Jackiewicz J (2014) Seismology of giant planets. ArXiv e-prints 1411.1740ADSGoogle Scholar
  48. Gillon M, Triaud AHMJ, Demory BO et al (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542:456–460. doi:10.1038/nature21360 ADSCrossRefGoogle Scholar
  49. Giuricin G, Mardirossian F, Mezzetti M (1984) Synchronization in eclipsing binary stars. A&A 131:152–158ADSGoogle Scholar
  50. Glatzmaier GA (2013) Introduction to modelling convection in planets and stars. Princeton University Press, PrincetonGoogle Scholar
  51. Gold T, Soter S (1969) Atmospheric tides and the resonant rotation of Venus. Icarus 11:356–366. doi:10.1016/0019-1035(69)90068-2 ADSCrossRefGoogle Scholar
  52. Goldreich P, Keeley DA (1977) Solar seismology. I – the stability of the solar p-modes. ApJ 211:934–942. doi:10.1086/155005 Google Scholar
  53. Goldreich P, Nicholson PD (1989) Tidal friction in early-type stars. ApJ 342:1079–1084. doi:10.1086/167665 ADSCrossRefGoogle Scholar
  54. Goldreich P, Soter S (1966) Q in the solar system. Icarus 5:375–389. doi:10.1016/0019-1035(66)90051-0 ADSCrossRefGoogle Scholar
  55. Goodman J, Dickson ES (1998) Dynamical tide in solar-type binaries. ApJ 507:938–944. doi:10.1086/306348, astro-ph/9801289
  56. Goodman J, Lackner C (2009) Dynamical tides in rotating planets and stars. ApJ 696:2054–2067. doi:10.1088/0004-637X/696/2/2054, 0812.1028
  57. Greenberg R (2009) Frequency dependence of tidal q. ApJ 698:L42–L45. doi:10.1088/0004-637X/698/1/L42 ADSCrossRefGoogle Scholar
  58. Guenel M, Mathis S, Remus F (2014) Unravelling tidal dissipation in gaseous giant planets. A&A 566:L9. doi:10.1051/0004-6361/201424010, 1406.1672
  59. Guenel M, Baruteau C, Mathis S, Rieutord M (2016a) Tidal inertial waves in differentially rotating convective envelopes of low-mass stars. I. Free oscillation modes. A&A 589:A22. doi:10.1051/0004-6361/201527621, 1601.04617
  60. Guenel M, Mathis S, Baruteau C, Rieutord M (2016b) Tidal dissipation by inertial waves in differentially rotating convective envelopes of low-mass stars. ArXiv e-prints 1612.05071Google Scholar
  61. Guillot T (1999) Interiors of giant planets inside and outside the solar system. Science 296:72–77ADSCrossRefGoogle Scholar
  62. Hansen BMS (2012) Calibration of equilibrium tide theory for extrasolar planet systems. II. ApJ 757:6. doi:10.1088/0004-637X/757/1/6, 1204.3903
  63. Heimpel M, Gastine T, Wicht J (2016) Simulation of deep-seated zonal jets and shallow vortices in gas giant atmospheres. Nat Geosci 9:19–23. doi:10.1038/ngeo2601 ADSCrossRefGoogle Scholar
  64. Heller R, Leconte J, Barnes R (2011) Tidal obliquity evolution of potentially habitable planets. A&A 528:A27. doi:10.1051/0004-6361/201015809, 1101.2156
  65. Husnoo N, Pont F, Mazeh T et al (2012) Observational constraints on tidal effects using orbital eccentricities. MNRAS 422:3151–3177. doi:10.1111/j.1365-2966.2012.20839.x, 1202.6379
  66. Hut P (1980) Stability of tidal equilibrium. A&A 92:167–170ADSMathSciNetMATHGoogle Scholar
  67. Ivanov PB, Papaloizou JCB, Chernov SV (2013) A unified normal mode approach to dynamic tides and its application to rotating Sun-like stars. MNRAS 432:2339–2365. doi:10.1093/mnras/stt595, 1304.2027
  68. Jackson B, Greenberg R, Barnes R (2008) Tidal evolution of close-in extrasolar planets. ApJ 678:1396–1406. doi:10.1086/529187, 0802.1543
  69. Karato S, Spetzler HA (1990) Defect microdynamics in minerals and solid state mechanisms of seismic wave attenuation and velocity dispersion in the mantle. Rev Geophys 28:399–421. doi:10.1029/RG028i004p00399 ADSCrossRefGoogle Scholar
  70. Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101:108–128. doi:10.1006/icar.1993.1010 ADSCrossRefGoogle Scholar
  71. Kerswell RR (2002) Elliptical instability. Annu Rev Fluid Mech 34:83–113. doi:10.1146/annurev.fluid.34.081701.171829 ADSMathSciNetCrossRefMATHGoogle Scholar
  72. Kopparapu RK, Ramirez R, Kasting JF et al (2013) Habitable zones around main-sequence stars: new estimates. ApJ 765:131. doi:10.1088/0004-637X/765/2/131, 1301.6674
  73. Lagage PO (2015) Exoplanets characterisation with the JWST and particularly MIRI. European Planetary Science Congress 2015, held 27 Sept–2 Oct, 2015 in Nantes. Online at http://meetingorganizercopernicusorg/EPSC2015Google Scholar
  74. Lainey V, Arlot JE, Karatekin Ö, van Hoolst T (2009) Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature 459:957–959. doi:10.1038/nature08108 ADSCrossRefGoogle Scholar
  75. Lainey V, Karatekin Ö, Desmars J et al (2012) Strong tidal dissipation in Saturn and constraints on enceladus’ thermal state from Astrometry. ApJ 752:14. doi:10.1088/0004-637X/752/1/14, 1204.0895
  76. Lainey V, Jacobson RA, Tajeddine R et al (2017) New constraints on Saturn’s interior from Cassini astrometric data. Icarus 281:286–296. doi:10.1016/j.icarus.2016.07.014, 1510.05870
  77. Le Bars M, Cébron D, Le Gal P (2015) Flows driven by libration, precession, and tides. Annu Rev Fluid Mech 47:163–193. doi:10.1146/annurev-fluid-010814-014556 ADSCrossRefGoogle Scholar
  78. Leconte J, Chabrier G (2012) A new vision of giant planet interiors: impact of double diffusive convection. A&A 540:A20. doi:10.1051/0004-6361/201117595, 1201.4483
  79. Leconte J, Chabrier G (2013) Layered convection as the origin of Saturn’s luminosity anomaly. Nat Geosci 6:347–350. doi:10.1038/ngeo1791, 1304.6184
  80. Leconte J, Wu H, Menou K, Murray N (2015) Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars. Science 347:632–635. doi:10.1126/science.1258686, 1502.01952
  81. Lissauer JJ, Barnes JW, Chambers JE (2012) Obliquity variations of a moonless Earth. Icarus 217:77–87. doi:10.1016/j.icarus.2011.10.013 ADSCrossRefGoogle Scholar
  82. MacDonald GJF (1964) Tidal friction. Rev Geophys Space Phys 2:467–541. doi:10.1029/RG002i003p00467 ADSCrossRefGoogle Scholar
  83. Makarov VV (2015) Equilibrium rotation of semiliquid exoplanets and satellites. ApJ 810:12. doi:10.1088/0004-637X/810/1/12, 1507.07383
  84. Makarov VV, Efroimsky M (2013) No pseudosynchronous rotation for terrestrial planets and moons. ApJ 764:27. doi:10.1088/0004-637X/764/1/27, 1209.1616
  85. Mathis S (2009) Transport by gravito-inertial waves in differentially rotating stellar radiation zones. I – theoretical formulation. A&A 506:811–828. doi:10.1051/0004-6361/200810544 MATHGoogle Scholar
  86. Mathis S (2013) Transport processes in stellar interiors. In: Goupil M, Belkacem K, Neiner C, Lignières F, Green JJ (eds) Lecture notes in physics, vol 865. Springer, Berlin, p 23. doi:10.1007/978-3-642-33380-4_2 Google Scholar
  87. Mathis S (2015a) Melting the core of giant planets: impact on tidal dissipation. In: Martins F, Boissier S, Buat V, Cambrésy L, Petit P (eds) SF2A-2015: proceedings of the annual meeting of the French society of astronomy and astrophysics, pp 283–288. 1510.05639Google Scholar
  88. Mathis S (2015b) The variation of the tidal quality factor of convective envelopes of rotating low-mass stars along their evolution. In: Martins F, Boissier S, Buat V, Cambrésy L, Petit P (eds) SF2A-2015: proceedings of the annual meeting of the French society of astronomy and astrophysics, pp 401–405. 1511.01084Google Scholar
  89. Mathis S (2015c) Variation of tidal dissipation in the convective envelope of low-mass stars along their evolution. A&A 580:L3. doi:10.1051/0004-6361/201526472, 1507.00165
  90. Mathis S, Le Poncin-Lafitte C, Remus F (2013) Tides in planetary systems. In: Souchay J, Mathis S, Tokieda T (eds) Lecture notes in physics, vol 861. Springer, Berlin, p 255. doi:10.1007/978-3-642-32961-6_7 Google Scholar
  91. Mathis S, Auclair-Desrotour P, Guenel M, Gallet F, Le Poncin-Lafitte C (2016) The impact of rotation on turbulent tidal friction in stellar and planetary convective regions. A&A 592:A33. doi:10.1051/0004-6361/201527545, 1604.08570
  92. Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378:355–359. doi:10.1038/378355a0 ADSCrossRefGoogle Scholar
  93. Mazeh T, Perets HB, McQuillan A, Goldstein ES (2015) Photometric amplitude distribution of stellar rotation of KOIs. Indication for spin-orbit alignment of cool stars and high obliquity for hot stars. ApJ 801:3. doi:10.1088/0004-637X/801/1/3, 1501.01288
  94. Mazevet S, Tsuchiya T, Taniuchi T, Benuzzi-Mounaix A, Guyot F (2015) Melting and metallization of silica in the cores of gas giants, ice giants, and super Earths. Phys Rev B 92(1):014105. doi:10.1103/PhysRevB.92.014105, 1408.3806
  95. Meibom S, Mathieu RD (2005) A robust measure of tidal circularization in coeval binary populations: the solar-type spectroscopic binary population in the open cluster M35. ApJ 620:970–983. doi:10.1086/427082, astro-ph/0412147
  96. Militzer B, Soubiran F, Wahl SM, Hubbard W (2016) Understanding Jupiter’s interior. J Geophys Res (Planets) 121:1552–1572. doi:10.1002/2016JE005080, 1608.02685
  97. Mirouh GM, Baruteau C, Rieutord M, Ballot J (2016) Gravito-inertial waves in a differentially rotating spherical shell. J Fluid Mech 800:213–247. doi:10.1017/jfm.2016.382, 1511.05832
  98. Moll R, Garaud P (2017) The effect of rotation on oscillatory double-diffusive convection (Semiconvection). ApJ 834:44. doi:10.3847/1538-4357/834/1/44, 1610.03940
  99. Moutou C, Boisse I, Hébrard G et al (2015) SPIRou: a spectropolarimeter for the CFHT. In: Martins F, Boissier S, Buat V, Cambrésy L, Petit P (eds) SF2A-2015: proceedings of the annual meeting of the French society of astronomy and astrophysics, pp 205–212. 1510.01368Google Scholar
  100. Murray CD, Dermott SF (1999) Solar system dynamics. Cambridge University Press, CambridgeMATHGoogle Scholar
  101. Neron de Surgy O, Laskar J (1997) On the long term evolution of the spin of the Earth. A&A 318:975–989ADSGoogle Scholar
  102. Nettelmann N (2011) Predictions on the core mass of Jupiter and of giant planets in general. Ap&SS 336:47–51. doi:10.1007/s10509-011-0672-3, 1103.1263
  103. Nettelmann N, Fortney JJ, Moore K, Mankovich C (2015) An exploration of double diffusive convection in Jupiter as a result of hydrogen-helium phase separation. MNRAS 447:3422–3441. doi:10.1093/mnras/stu2634, 1412.4202
  104. Noyelles B, Frouard J, Makarov VV, Efroimsky M (2014) Spin-orbit evolution of Mercury revisited. Icarus 241:26–44. doi:10.1016/j.icarus.2014.05.045, 1307.0136
  105. Ogilvie GI (2005) Wave attractors and the asymptotic dissipation rate of tidal disturbances. J Fluid Mech 543:19–44. doi:10.1017/S0022112005006580, astro-ph/0506450
  106. Ogilvie GI (2013) Tides in rotating barotropic fluid bodies: the contribution of inertial waves and the role of internal structure. MNRAS 429:613–632. doi:10.1093/mnras/sts362, 1211.0837
  107. Ogilvie GI (2014) Tidal dissipation in stars and giant planets. ARA&A 52:171–210. doi:10.1146/annurev-astro-081913-035941, 1406.2207
  108. Ogilvie GI, Lesur G (2012) On the interaction between tides and convection. MNRAS 422:1975–1987. doi:10.1111/j.1365-2966.2012.20630.x, 1201.5020
  109. Ogilvie GI, Lin DNC (2004) Tidal dissipation in rotating giant planets. ApJ 610:477–509. doi:10.1086/421454, astro-ph/0310218
  110. Ogilvie GI, Lin DNC (2007) Tidal dissipation in rotating solar-type stars. ApJ 661:1180–1191. doi:10.1086/515435, astro-ph/0702492
  111. Papaloizou JCB, Savonije GJ (1997) Non-adiabatic tidal forcing of a massive, uniformly rotating star. III – asymptotic treatment for low frequencies in the inertial regime. MNRAS 291:651. doi:10.1093/mnras/291.4.651, astro-ph/9706187
  112. Penev K, Sasselov D, Robinson F, Demarque P (2007) On dissipation inside turbulent convection zones from three-dimensional simulations of solar convection. ApJ 655:1166–1171. doi:10.1086/507937, astro-ph/0607016
  113. Perryman M (2011) The exoplanet handbook. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  114. Pollack JB, Hubickyj O, Bodenheimer P et al (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124:62–85. doi:10.1006/icar.1996.0190 ADSCrossRefGoogle Scholar
  115. Press WH (1981) Radiative and other effects from internal waves in solar and stellar interiors. ApJ 245:286–303. doi:10.1086/158809 ADSCrossRefGoogle Scholar
  116. Quintana EV, Barclay T, Raymond SN et al (2014) An Earth-sized planet in the habitable zone of a cool star. Science 344:277–280. doi:10.1126/science.1249403, 1404.5667
  117. Rauer H, Catala C, Aerts C et al (2014) The PLATO 2.0 mission. Exp Astron 38:249–330. doi:10.1007/s10686-014-9383-4, 1310.0696
  118. Remus F, Mathis S, Zahn JP (2012a) The equilibrium tide in stars and giant planets. I. The coplanar case. A&A 544:A132. doi:10.1051/0004-6361/201118160, 1205.3536
  119. Remus F, Mathis S, Zahn JP, Lainey V (2012b) Anelastic tidal dissipation in multi-layer planets. A&A 541:A165. doi:10.1051/0004-6361/201118595, 1204.1468
  120. Remus F, Mathis S, Zahn JP, Lainey V (2015) The surface signature of the tidal dissipation of the core in a two-layer planet. A&A 573:A23. doi:10.1051/0004-6361/201424472, 1409.8343
  121. Ricker GR, Winn JN, Vanderspek R et al (2015) Transiting exoplanet survey satellite (TESS). J Astron Telesc Instrum Syst 1(1):014003. doi:10.1117/1.JATIS.1.1.014003 CrossRefGoogle Scholar
  122. Rieutord M (2015) Fluid dynamics: an introduction. Springer. doi:10.1007/978-3-319-09351-2 ADSMATHGoogle Scholar
  123. Rieutord M, Valdettaro L (1997) Inertial waves in a rotating spherical shell. J Fluid Mech 341:77–99ADSMathSciNetCrossRefMATHGoogle Scholar
  124. Rocca A (1987) Forced oscillations in a rotating star – low frequency gravity modes. A&A 175:81–90ADSMATHGoogle Scholar
  125. Rocca A (1989) Tidal effects in rotating close binaries. A&A 213:114–126ADSGoogle Scholar
  126. Salpeter EE (1973) On convection and gravitational layering in Jupiter and in stars of low mass. ApJ 181:L83. doi:10.1086/181190 ADSCrossRefGoogle Scholar
  127. Savonije GJ, Witte MG (2002) Tidal interaction of a rotating 1 vec {M_sun} star with a binary companion. A&A 386:211–221. doi:10.1051/0004-6361:20020237, astro-ph/0202276
  128. Schröder KP, Connon Smith R (2008) Distant future of the sun and earth revisited. MNRAS 386:155–163. doi:10.1111/j.1365-2966.2008.13022.x, 0801.4031
  129. Shoji D, Hussmann H (2017) Frequency-dependent tidal dissipation in a viscoelastic saturnian core and expansion of Mimas’ semi-major axis. A&A 599:L10. doi:10.1051/0004-6361/201630230, 1612.03664
  130. Sinclair AT (1983) A re-consideration of the evolution hypothesis of the origin of the resonances among Saturn’s satellites. In: Markellos VV, Kozai Y (eds) IAU Colloq. 74: dynamical trapping and evolution in the solar system. Astrophysics and space science library, vol 106, pp 19–25. doi:10.1007/978-94-009-7214-8_2 ADSCrossRefGoogle Scholar
  131. Stevenson DJ (1975) Thermodynamics and phase separation of dense fully ionized hydrogen-helium fluid mixtures. Phys Rev B 12:3999–4007. doi:10.1103/PhysRevB.12.3999 ADSCrossRefGoogle Scholar
  132. Stevenson DJ (1979) Turbulent thermal convection in the presence of rotation and a magnetic field – a heuristic theory. Geophys Astrophys Fluid Dyn 12:139–169. doi:10.1080/03091927908242681 ADSCrossRefMATHGoogle Scholar
  133. Stevenson DJ (1985) Cosmochemistry and structure of the giant planets and their satellites. Icarus 62:4–15. doi:10.1016/0019-1035(85)90168-X ADSCrossRefGoogle Scholar
  134. Storch NI, Lai D (2014) Viscoelastic tidal dissipation in giant planets and formation of hot Jupiters through high-eccentricity migration. MNRAS 438:1526–1534. doi:10.1093/mnras/stt2292, 1308.4968
  135. Storch NI, Lai D (2015) Analytical model of tidal distortion and dissipation for a giant planet with a viscoelastic core. MNRAS 450:3952–3957. doi:10.1093/mnras/stv904, 1502.06550
  136. Strugarek A, Brun AS, Matt SP, Réville V (2015) Magnetic games between a planet and its host star: the key role of topology. ApJ 815:111. doi:10.1088/0004-637X/815/2/111, 1511.02837
  137. Terquem C, Papaloizou JCB, Nelson RP, Lin DNC (1998) On the tidal interaction of a solar-type star with an orbiting companion: excitation of g-Mode oscillation and orbital evolution. ApJ 502:788–801. doi:10.1086/305927, astro-ph/9801280
  138. Tinetti G, Drossart P, Eccleston P et al (2015) The EChO science case. Exp Astron 40:329–391. doi:10.1007/s10686-015-9484-8, 1502.05747
  139. Tobie G, Grasset O, Lunine JI, Mocquet A, Sotin C (2005) Titan’s internal structure inferred from a coupled thermal-orbital model. Icarus 175:496–502. doi:10.1016/j.icarus.2004.12.007 ADSCrossRefGoogle Scholar
  140. Verbunt F, Phinney ES (1995) Tidal circularization and the eccentricity of binaries containing giant stars. A&A 296:709ADSGoogle Scholar
  141. Webb DJ (1980) Tides and tidal friction in a hemispherical ocean centred at the equator. Geophys J 61:573–600. doi:10.1111/j.1365-246X.1980.tb04833.x ADSCrossRefMATHGoogle Scholar
  142. Wei X (2016) Calculating rotating hydrodynamic and magnetohydrodynamic waves to understand magnetic effects on dynamical tides. ApJ 828:30. doi:10.3847/0004-637X/828/1/30, 1606.06232
  143. Wilson HF, Militzer B (2012) Rocky core solubility in Jupiter and giant exoplanets. Phys Rev Lett 108(11):111101. doi:10.1103/PhysRevLett.108.111101, 1111.6309
  144. Winn JN, Fabrycky D, Albrecht S, Johnson JA (2010) Hot stars with hot Jupiters have high obliquities. ApJ 718:L145–L149. doi:10.1088/2041-8205/718/2/L145, 1006.4161
  145. Witte MG, Savonije GJ (2002) Orbital evolution by dynamical tides in solar type stars. Application to binary stars and planetary orbits. A&A 386:222–236. doi:10.1051/0004-6361:20020155 Google Scholar
  146. Wu Y (2005a) Origin of tidal dissipation in Jupiter. I. Properties of inertial modes. ApJ 635:674–687. doi:10.1086/497354, astro-ph/0407627
  147. Wu Y (2005b) Origin of tidal dissipation in Jupiter. II. The value of Q. ApJ 635:688–710. doi:10.1086/497355, astro-ph/0407628
  148. Zahn JP (1966a) Les marées dans une étoile double serrée. Annales d’Astrophysique 29:313ADSGoogle Scholar
  149. Zahn JP (1966b) Les marées dans une étoile double serrée (suite). Annales d’Astrophysique 29:489ADSGoogle Scholar
  150. Zahn JP (1975) The dynamical tide in close binaries. A&A 41:329–344ADSGoogle Scholar
  151. Zahn JP (1977) Tidal friction in close binary stars. A&A 57:383–394ADSGoogle Scholar
  152. Zahn JP (2013) Stellar tides. In: Souchay J, Mathis S, Tokieda T (eds) Lecture notes in physics, vol 861. Springer, Berlin, p 301. doi:10.1007/978-3-642-32961-6_8 Google Scholar
  153. Zahn JP, Bouchet L (1989) Tidal evolution of close binary stars. II – orbital circularization of late-type binaries. A&A 223:112–118Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratoire AIM Paris-Saclay, IRFU/DAp Centre de SaclayCEA/DRF – CNRS – Université Paris DiderotGif-sur-Yvette CedexFrance
  2. 2.LESIA, Observatoire de ParisPSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris DiderotMeudonFrance

Personalised recommendations