Skip to main content

Characterizing the Rotation of Exoplanet Host Stars

  • Living reference work entry
  • First Online:
Handbook of Exoplanets
  • 2 Accesses

Abstract

Stellar rotation plays an important role in the evolution of planetary systems. The first half of this chapter gives an overview of stellar rotation and its evolution over time, before discussing how that evolution can be influenced by the presence of planets and the implications thereof for estimating stellar ages using rotation. The second half of the chapter describes a range of different methods for studying rotation in planet-hosting stars, along with some of the results obtained using those methods, before concluding with a brief look toward the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abney WDW (1877) Effect of a star’s rotation on its spectrum. MNRAS 37:278–279

    Article  ADS  Google Scholar 

  • Ahlers JP, Johnson MC, Stassun KG et al (2020) KELT-9 b’s asymmetric TESS transit caused by rapid stellar rotation and spin-orbit misalignment. AJ 160(1):4

    Article  ADS  Google Scholar 

  • Araújo A, Valio A (2021) Kepler-411 differential rotation from three transiting planets. ApJ 907(1):L5

    Article  ADS  Google Scholar 

  • Araújo A, Valio A (2023) Dependence of stellar differential rotation on effective temperature and rotation: an analysis from starspot transit mapping. ApJ 956(2):141

    Article  ADS  Google Scholar 

  • Avallone EA, Tayar JN, van Saders JL et al (2022) Rotation distributions around the kraft break with TESS and Kepler: the influences of age, metallicity, and binarity. ApJ 930(1):7

    Article  ADS  Google Scholar 

  • Bakos G, Noyes RW, Kovács G et al (2004) Wide-field millimagnitude photometry with the HAT: a tool for extrasolar planet detection. PASP 116(817):266–277

    Article  ADS  Google Scholar 

  • Bakos GÁ, Lázár J, Papp I, Sári P, Green EM (2002) System description and first light curves of the hungarian automated telescope, an autonomous observatory for variability search. PASP 114(799):974–987

    Article  ADS  Google Scholar 

  • Balachandran SC, Mallik SV, Lambert DL (2011) Lithium abundances in the α Per cluster. MNRAS 410(4):2526–2539

    Article  ADS  Google Scholar 

  • Barnes JW (2009) Transit lightcurves of extrasolar planets orbiting rapidly rotating stars. ApJ 705(1):683–692

    Article  ADS  Google Scholar 

  • Barnes SA (2003) On the rotational evolution of solar- and late-type stars, its magnetic origins, and the possibility of stellar gyrochronology. ApJ 586(1):464–479

    Article  ADS  Google Scholar 

  • Barnes SA (2007) Ages for illustrative field stars using gyrochronology: viability, limitations, and errors. ApJ 669(2):1167–1189

    Article  ADS  Google Scholar 

  • Barnes SA (2010) A simple nonlinear model for the rotation of main-sequence cool stars. I. Introduction, implications for gyrochronology, and color-period diagrams. ApJ 722(1):222–234

    Article  ADS  Google Scholar 

  • Barnes SA, Kim YC (2010) Angular momentum loss from cool stars: an empirical expression and connection to stellar activity. ApJ 721(1):675–685

    Article  ADS  Google Scholar 

  • Barnes SA, Spada F, Weingrill J (2016a) Some aspects of cool main sequence star ages derived from stellar rotation (gyrochronology). Astron Nachr 337(8–9):810

    Article  ADS  Google Scholar 

  • Barnes SA, Weingrill J, Fritzewski D, Strassmeier KG, Platais I (2016b) Rotation periods for cool stars in the 4 Gyr old open cluster M67, the solar-stellar connection, and the applicability of gyrochronology to at least solar age. ApJ 823(1):16

    Article  ADS  Google Scholar 

  • Barrado D, Bouy H, Bouvier J et al (2016) The seven sisters DANCe. II. Proper motions and the lithium rotation-activity connection for G and K Pleiades. A&A 596:A113

    Google Scholar 

  • Baumann P, Ramírez I, Meléndez J, Asplund M, Lind K (2010) Lithium depletion in solar-like stars: no planet connection. A&A 519:A87

    Article  ADS  Google Scholar 

  • Béky B, Holman MJ, Kipping DM, Noyes RW (2014) Stellar rotation-planetary orbit period commensurability in the HAT-P-11 system. ApJ 788(1):1

    Article  ADS  Google Scholar 

  • Benomar O, Bazot M, Nielsen MB et al (2018) Asteroseismic detection of latitudinal differential rotation in 13 Sun-like stars. Science 361(6408):1231–1234

    Article  ADS  Google Scholar 

  • Binks AS, Jeffries RD, Sacco GG et al (2022) The Gaia-ESO survey: constraining evolutionary models and ages for young low mass stars with measurements of lithium depletion and rotation. MNRAS 513(4):5727–5751

    ADS  Google Scholar 

  • Bonfanti A, Fossati L, Kubyshkina D, Cubillos PE (2021) Constraining stellar rotation and planetary atmospheric evolution of a dozen systems hosting sub-Neptunes and super-Earths. A&A 656:A157

    Article  ADS  Google Scholar 

  • Borucki WJ, Koch D, Basri G et al (2010) Kepler planet-detection mission: introduction and first results. Science 327(5968):977

    Article  ADS  Google Scholar 

  • Bouvier J, Lanzafame AC, Venuti L et al (2016) The Gaia-ESO survey: a lithium-rotation connection at 5 Myr? A&A 590:A78

    Article  ADS  Google Scholar 

  • Bowler BP, Tran QH, Zhang Z et al (2023) Rotation periods, inclinations, and obliquities of cool stars hosting directly imaged substellar companions: spin-orbit misalignments are common. AJ 165(4):164

    Article  ADS  Google Scholar 

  • Breton SN, Santos ARG, Bugnet L et al (2021) ROOSTER: a machine-learning analysis tool for Kepler stellar rotation periods. A&A 647:A125

    Article  ADS  Google Scholar 

  • Brown DJA (2014) Discrepancies between isochrone fitting and gyrochronology for exoplanet host stars? MNRAS 442(2):1844–1862

    Article  ADS  Google Scholar 

  • Brown DJA, Collier Cameron A, Hall C, Hebb L, Smalley B (2011) Are falling planets spinning up their host stars? MNRAS 415(1):605–618

    Article  ADS  Google Scholar 

  • Bruno G, Lewis NK, Stevenson KB et al (2018) Starspot occultations in infrared transit spectroscopy: the case of WASP-52b. AJ 156(3):124

    Article  ADS  Google Scholar 

  • Canto Martins BL, Gomes RL, Messias YS et al (2020) A search for rotation periods in 1000 TESS objects of interest. ApJS 250(1):20

    Article  ADS  Google Scholar 

  • Cao L, Pinsonneault MH, van Saders JL (2023) Core-envelope decoupling drives radial shear dynamos in cool stars. ApJ 951(2):L49

    Article  ADS  Google Scholar 

  • Carlberg JK, Majewski SR, Arras P (2009) The role of planet accretion in creating the next generation of red giant rapid rotators. ApJ 700(1):832–843

    Article  ADS  Google Scholar 

  • Carlberg JK, Cunha K, Smith VV, Majewski SR (2012) Observable signatures of planet accretion in red giant stars. I. Rapid rotation and light element replenishment. ApJ 757(2):109

    Google Scholar 

  • Cegla HM, Lovis C, Bourrier V et al (2016) The Rossiter-McLaughlin effect reloaded: probing the 3D spin-orbit geometry, differential stellar rotation, and the spatially-resolved stellar spectrum of star-planet systems. A&A 588:A127

    Article  ADS  Google Scholar 

  • Claytor ZR, van Saders JL, Llama J et al (2022) Recovery of TESS stellar rotation periods using deep learning. ApJ 927(2):219

    Article  ADS  Google Scholar 

  • Curtis JL, Agüeros MA, Douglas ST, Meibom S (2019) A temporary epoch of stalled spin-down for low-mass stars: insights from NGC 6811 with Gaia and Kepler. ApJ 879(1):49

    Article  ADS  Google Scholar 

  • Curtis JL, Agüeros MA, Matt SP et al (2020) When do stalled stars resume spinning down? Advancing gyrochronology with Ruprecht 147. ApJ 904(2):140

    Article  ADS  Google Scholar 

  • Darwin GH (1899) The theory of the figure of the Earth carried to the second order of small quantities. MNRAS 60:82

    Article  ADS  Google Scholar 

  • de Zeeuw T, Tamai R, Liske J (2014) Constructing the E-ELT. Messenger 158:3–6

    ADS  Google Scholar 

  • Delgado Mena E, Israelian G, González Hernández JI et al (2014) Li depletion in solar analogues with exoplanets. Extending the sample. A&A 562:A92

    Google Scholar 

  • Delgado Mena E, Bertrán de Lis S, Adibekyan VZ et al (2015) Li abundances in F stars: planets, rotation, and Galactic evolution. A&A 576:A69

    Article  ADS  Google Scholar 

  • Dholakia S, Luger R, Dholakia S (2022) Efficient and precise transit light curves for rapidly rotating, oblate stars. ApJ 925(2):185

    Article  ADS  Google Scholar 

  • Dobbs-Dixon I, Lin DNC, Mardling RA (2004) Spin-orbit evolution of short-period planets. ApJ 610(1):464–476

    Article  ADS  Google Scholar 

  • Doyle L, Cegla HM, Bryant E et al (2022) The hot Neptune WASP-166 b with ESPRESSO – I. Refining the planetary architecture and stellar variability. MNRAS 516(1):298–315

    Article  ADS  Google Scholar 

  • Doyle L, Cegla HM, Anderson DR et al (2023) WASP-131 b with ESPRESSO – I. A bloated sub-Saturn on a polar orbit around a differentially rotating solar-type star. MNRAS 522(3):4499–4514

    Article  ADS  Google Scholar 

  • Dungee R, van Saders J, Gaidos E et al (2022) A 4 Gyr M-dwarf gyrochrone from CFHT/MegaPrime monitoring of the open cluster M67. ApJ 938(2):118

    Article  ADS  Google Scholar 

  • Fernández JF, Wheatley PJ, King GW (2023a) The shared evaporation history of three sub-Neptunes spanning the radius-period valley of a hyades star. MNRAS 522(3):4251–4264

    Article  ADS  Google Scholar 

  • Fernández JF, Wheatley PJ, King GW, Jenkins JS (2023b) Survival in the Neptune desert: LTT 9779 b kept its atmosphere thanks to an unusually X-ray faint host star. MNRAS 527(1): 911–918

    Article  ADS  Google Scholar 

  • Figueira P, Faria JP, Delgado-Mena E et al (2014) Exoplanet hosts reveal lithium depletion. Results from a homogeneous statistical analysis. A&A 570:A21

    Google Scholar 

  • Gallet F, Delorme P (2019) Star-planet tidal interaction and the limits of gyrochronology. A&A 626:A120

    Article  ADS  Google Scholar 

  • Gallet F, Bolmont E, Bouvier J, Mathis S, Charbonnel C (2018) Planetary tidal interactions and the rotational evolution of low-mass stars. The Pleiades’ Anomaly. A&A 619:A80

    Article  Google Scholar 

  • Gilhool SH, Blake CH (2019) A data-driven technique for measuring stellar rotation. ApJ 875(1):8

    Article  ADS  Google Scholar 

  • Gillen E, Aigrain S, Terquem C et al (2017) CoRoT 223992193: investigating the variability in a low-mass, pre-main sequence eclipsing binary with evidence of a circumbinary disk. A&A 599:A27

    Article  ADS  Google Scholar 

  • Gilmozzi R, Spyromilio J (2007) The European Extremely Large Telescope (E-ELT). Messenger 127:11

    ADS  Google Scholar 

  • Gizon L, Solanki SK (2004) Measuring stellar differential rotation with asteroseismology. Sol Phys 220(2):169–184

    Article  ADS  Google Scholar 

  • Godoy-Rivera D, Pinsonneault MH, Rebull LM (2021) Stellar rotation in the Gaia era: revised open clusters’ sequences. ApJS 257(2):46

    Article  ADS  Google Scholar 

  • Goldreich P, Schubert G (1967) Differential rotation in stars. ApJ 150:571

    Article  ADS  Google Scholar 

  • Gonzalez G (2008) Parent stars of extrasolar planets – IX. Lithium abundances. MNRAS 386(2):928–934

    Article  ADS  Google Scholar 

  • Gonzalez G (2014) Parent stars of extrasolar planets – XIII. Additional evidence for Li abundance anomalies. MNRAS 441(2):1201–1208

    Article  ADS  Google Scholar 

  • Gonzalez G (2015) Parent stars of extrasolar planets – XV. Host star rotation revisited with Kepler data. MNRAS 450(3):3227–3232

    Article  ADS  Google Scholar 

  • Gonzalez G, Carlson MK, Tobin RW (2010) Parent stars of extrasolar planets – X. Lithium abundances and vsini revisited. MNRAS 403(3):1368–1380

    Article  ADS  Google Scholar 

  • Gruner D, Barnes SA, Janes KA (2023a) Wide binaries demonstrate the consistency of rotational evolution between open cluster and field stars. A&A 675:A180

    Article  ADS  Google Scholar 

  • Gruner D, Barnes SA, Weingrill J (2023b) New insights into the rotational evolution of near-solar age stars from the open cluster M 67. A&A 672:A159

    Article  ADS  Google Scholar 

  • Guo SS (2023) The impact of tidal migration of hot Jupiters on the rotation of Sun-like main-sequence stars. Res Astron Astrophys 23(9):095014

    Article  ADS  Google Scholar 

  • Hall OJ, Davies GR, van Saders J et al (2021) Weakened magnetic braking supported by asteroseismic rotation rates of Kepler dwarfs. Nat Astron 5:707–714

    Article  ADS  Google Scholar 

  • Israelian G, Santos NC, Mayor M, Rebolo R (2004) Lithium in stars with exoplanets. A&A 414:601–611

    Article  ADS  Google Scholar 

  • Israelian G, Delgado Mena E, Santos NC et al (2009) Enhanced lithium depletion in Sun-like stars with orbiting planets. Nature 462(7270):189–191

    Article  ADS  Google Scholar 

  • Jeffries RD, Jackson RJ, Sun Q, Deliyannis CP (2021) The effects of rotation on the lithium depletion of G- and K-dwarfs in Messier 35. MNRAS 500(1):1158–1177

    Article  ADS  Google Scholar 

  • Johnstone CP, Bartel M, Güdel M (2021) The active lives of stars: a complete description of the rotation and XUV evolution of F, G, K, and M dwarfs. A&A 649:A96

    Article  ADS  Google Scholar 

  • Kim SL (2023) Asteroseismic determination of stellar rotation: on synchronization in the close eclipsing binaries AB Cas and OO Dra. ApJ 948(1):16

    Article  ADS  Google Scholar 

  • Kim SL, Lee JW, Lee CU et al (2021) Pulsation and rotation of the EL CVn-type eclipsing binary 1SWASP J024743.37-251549.2. AJ 162(5):212

    Google Scholar 

  • Kovács G (2015) Are the gyro-ages of field stars underestimated? A&A 581:A2

    Article  ADS  Google Scholar 

  • Kraft RP (1967) Studies of stellar rotation. V. The dependence of rotation on age among solar-type stars. ApJ 150:551

    Google Scholar 

  • Kubyshkina D, Cubillos PE, Fossati L et al (2019) Close-in sub-Neptunes reveal the past rotation history of their host stars: atmospheric evolution of planets in the HD 3167 and K2-32 planetary systems. ApJ 879(1):26

    Article  ADS  Google Scholar 

  • Kubyshkina D, Vidotto AA, Villarreal D’Angelo C et al (2022) Atmospheric mass-loss and stellar wind effects in young and old systems – I. Comparative 3D study of TOI-942 and TOI-421 systems. MNRAS 510(2):2111–2126

    Article  ADS  Google Scholar 

  • Kurtz DW, Saio H, Takata M et al (2014) Asteroseismic measurement of surface-to-core rotation in a main-sequence A star, KIC 11145123. MNRAS 444(1):102–116

    Article  ADS  Google Scholar 

  • Li G, Guo Z, Fuller J et al (2020) The effect of tides on near-core rotation: analysis of 35 Kepler γ Doradus stars in eclipsing and spectroscopic binaries. MNRAS 497(4):4363–4375

    Article  ADS  Google Scholar 

  • Marconi A, Abreu M, Adibekyan V et al (2022) ANDES, the high resolution spectrograph for the ELT: science case, baseline design and path to construction. In: Evans CJ, Bryant JJ, Motohara K (eds) Ground-based and Airborne Instrumentation for Astronomy IX, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 12184, p 1218424. https://doi.org/10.1117/12.2628689

  • Masuda K (2022) Detectability of rotational modulation in Kepler Sun-like stars as a function of age. ApJ 937(2):94

    Article  ADS  Google Scholar 

  • Maxted PFL (2018) Rotation of planet-hosting stars. In: Deeg HJ,0 Belmonte JA (eds) Handbook of exoplanets, p 18. https://doi.org/10.1007/978-3-319-55333-7_18

  • Maxted PFL, Serenelli AM, Southworth J (2015) Comparison of gyrochronological and isochronal age estimates for transiting exoplanet host stars. A&A 577:A90

    Article  ADS  Google Scholar 

  • Mayor M, Pepe F, Queloz D et al (2003) Setting new standards with HARPS. Messenger 114: 20–24

    ADS  Google Scholar 

  • McCormac J, Gillen E, Jackman JAG et al (2020) NGTS-10b: the shortest period hot Jupiter yet discovered. MNRAS 493(1):126–140

    Article  ADS  Google Scholar 

  • McLaughlin DB (1924) Some results of a spectrographic study of the Algol system. ApJ 60:22–31

    Article  ADS  Google Scholar 

  • McQuillan A, Mazeh T, Aigrain S (2014) Rotation periods of 34,030 Kepler main-sequence stars: the full autocorrelation sample. ApJS 211(2):24

    Article  ADS  Google Scholar 

  • Messina S, Lanzafame AC, Feiden GA et al (2016) The rotation-lithium depletion correlation in the β Pictoris association and the LDB age determination. A&A 596:A29

    Article  ADS  Google Scholar 

  • Metcalfe TS, Finley AJ, Kochukhov O et al (2022) The origin of weakened magnetic braking in old solar analogs. ApJ 933(1):L17

    Article  ADS  Google Scholar 

  • Mitchell WM (1916) The history of the discovery of the solar spots. Pop Astron 24:22

    ADS  Google Scholar 

  • Močnik T, Clark BJM, Anderson DR, Hellier C, Brown DJA (2016) Starspots on WASP-85. AJ 151(6):150

    Article  ADS  Google Scholar 

  • Močnik T, Hellier C, Anderson DR, Clark BJM, Southworth J (2017) Starspots on WASP-107 and pulsations of WASP-118. MNRAS 469(2):1622–1629

    Article  ADS  Google Scholar 

  • Ness M, Hogg DW, Rix HW, Ho AYQ, Zasowski G (2015) The Cannon: a data-driven approach to stellar label determination. ApJ 808(1):16

    Article  ADS  Google Scholar 

  • Netto Y, Valio A (2020) Stellar magnetic activity and the butterfly diagram of Kepler-63. A&A 635:A78

    Article  ADS  Google Scholar 

  • Nielsen MB, Gizon L, Schunker H, Karoff C (2013) Rotation periods of 12 000 main-sequence Kepler stars: Dependence on stellar spectral type and comparison with v sin i observations. A&A 557:L10

    Article  ADS  Google Scholar 

  • Nielsen MB, Schunker H, Gizon L, Ball WH (2015) Constraining differential rotation of Sun-like stars from asteroseismic and starspot rotation periods. A&A 582:A10

    Article  ADS  Google Scholar 

  • Oetjens A, Carone L, Bergemann M, Serenelli A (2020) The influence of planetary engulfment on stellar rotation in metal-poor main-sequence stars. A&A 643:A34

    Article  ADS  Google Scholar 

  • Osborn A, Bayliss D (2020) Investigating the planet-metallicity correlation for hot Jupiters. MNRAS 491(3):4481–4487

    Article  ADS  Google Scholar 

  • Pallavicini R, Golub L, Rosner R et al (1981) Relations among stellar X-ray emission observed from Einstein, stellar rotation and bolometric luminosity. ApJ 248:279–290

    Article  ADS  Google Scholar 

  • Penev K, Hartman JD, Bakos GÁ et al (2016) HATS-18b: an extreme short-period massive transiting planet spinning up its star. AJ 152(5):127

    Article  ADS  Google Scholar 

  • Penev K, Bouma LG, Winn JN, Hartman JD (2018) Empirical tidal dissipation in exoplanet hosts from tidal spin-up. AJ 155(4):165

    Article  ADS  Google Scholar 

  • Pepe F, Cristiani S, Rebolo R et al (2021) ESPRESSO at VLT. On-sky performance and first results. A&A 645:A96

    Google Scholar 

  • Pinsonneault MH, Kawaler SD, Sofia S, Demarque P (1989) Evolutionary models of the rotating Sun. ApJ 338:424

    Article  ADS  Google Scholar 

  • Pizzolato N, Maggio A, Micela G, Sciortino S, Ventura P (2003) The stellar activity-rotation relationship revisited: dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs. A&A 397:147–157

    Article  ADS  Google Scholar 

  • Pollacco DL, Skillen I, Collier Cameron A et al (2006) The WASP project and the SuperWASP cameras. PASP 118(848):1407–1418

    Article  ADS  Google Scholar 

  • Privitera G, Meynet G, Eggenberger P et al (2016) Star-planet interactions. II. Is planet engulfment the origin of fast rotating red giants? A&A 593:A128

    Google Scholar 

  • Radau R (1885) Sur la loi des densités à l’intérieur de la Terre. CR Acad Sci Paris 100:972–974

    Google Scholar 

  • Randich S, Martin EL, Garcia Lopez RJ, Pallavicini R (1998) Lithium in ROSAT-discovered candidate members in the Alpha Persei cluster. A&A 333:591–602

    ADS  Google Scholar 

  • Rauer H, Catala C, Aerts C et al (2014) The PLATO 2.0 mission. Exp Astron 38(1–2):249–330

    Article  ADS  Google Scholar 

  • Reinhold T, Gizon L (2015) Rotation, differential rotation, and gyrochronology of active Kepler stars. A&A 583:A65

    Article  ADS  Google Scholar 

  • Reinhold T, Reiners A, Basri G (2013) Rotation and differential rotation of active Kepler stars. A&A 560:A4

    Article  ADS  Google Scholar 

  • Reinhold T, Shapiro AI, Solanki SK, Basri G (2023) New rotation period measurements of 67 163 Kepler stars. A&A 678:A24

    Article  ADS  Google Scholar 

  • Ricker GR, Winn JN, Vanderspek R et al (2015) Transiting Exoplanet Survey Satellite (TESS). J Astron Telesc Instrum Syst 1:014003

    Article  ADS  Google Scholar 

  • Roettenbacher RM, Monnier JD, Korhonen H et al (2016) No Sun-like dynamo on the active star ζ Andromedae from starspot asymmetry. Nature 533(7602):217–220

    Article  ADS  Google Scholar 

  • Rossiter RA (1924) On the detection of an effect of rotation during eclipse in the velocity of the brigher component of beta Lyrae, and on the constancy of velocity of this system. ApJ 60:15–21

    Article  ADS  Google Scholar 

  • Saio H, Kurtz DW, Takata M et al (2015) Asteroseismic measurement of slow, nearly uniform surface-to-core rotation in the main-sequence F star KIC 9244992. MNRAS 447(4):3264–3277

    Article  ADS  Google Scholar 

  • Santos ARG, García RA, Mathur S et al (2019) Surface rotation and photometric activity for Kepler targets. I. M and K main-sequence stars. ApJS 244(1):21

    Google Scholar 

  • Santos ARG, Breton SN, Mathur S, García RA (2021) Surface rotation and photometric activity for Kepler targets. II. G and F main-sequence stars and cool subgiant stars. ApJS 255(1):17

    Google Scholar 

  • Schatzman E (1962) A theory of the role of magnetic activity during star formation. Ann d’Astrophys 25:18

    ADS  Google Scholar 

  • Schlesinger F (1911) Rotation of stars about their axes. MNRAS 71:719–719

    Article  ADS  Google Scholar 

  • Serrano LM, Oshagh M, Cegla HM et al (2020) Can we detect the stellar differential rotation of WASP-7 through the Rossiter-McLaughlin observations? MNRAS 493(4):5928–5943

    Article  ADS  Google Scholar 

  • Shajn G, Struve O (1929) On the rotation of the stars. MNRAS 89:222–239

    Article  ADS  Google Scholar 

  • Silva-Beyer J, Godoy-Rivera D, Chanamé J (2023) The breakdown of current gyrochronology as evidenced by old coeval stars. MNRAS 523(4):5947–5961

    Article  ADS  Google Scholar 

  • Silva-Valio A (2008) Estimating stellar rotation from starspot detection during planetary transits. ApJ 683(2):L179

    Article  ADS  Google Scholar 

  • Silva-Valio A, Lanza AF (2011) Time evolution and rotation of starspots on CoRoT-2 from the modelling of transit photometry. A&A 529:A36

    Article  ADS  Google Scholar 

  • Skumanich A (1972) Time scales for Ca II emission decay, rotational braking, and lithium depletion. ApJ 171:565

    Article  ADS  Google Scholar 

  • Soderblom DR, Jones BF, Balachandran S et al (1993) The evolution of the lithium abundances of solar-type stars. III. The Pleiades. AJ 106:1059

    Google Scholar 

  • Somers G, Stassun KG (2017) A measurement of radius inflation in the Pleiades and its relation to rotation and lithium depletion. AJ 153(3):101

    Article  ADS  Google Scholar 

  • Stewartson K (1966) On almost rigid rotations. Part 2. J Fluid Mech 26:131–144

    Article  ADS  Google Scholar 

  • Strassmeier KG (2009) Starspots. A&A Rev 17(3):251–308

    Article  ADS  Google Scholar 

  • Takeda Y, Kawanomoto S, Honda S, Ando H, Sakurai T (2007) Behavior of Li abundances in solar-analog stars. Evidence for line-width dependence. A&A 468(2):663–677

    Article  ADS  Google Scholar 

  • Tayar J, Moyano FD, Soares-Furtado M et al (2022) Spinning up the Surface: Evidence for Planetary Engulfment or Unexpected Angular Momentum Transport? ApJ 940(1):23

    Article  ADS  Google Scholar 

  • Tu L, Johnstone CP, Güdel M, Lammer H (2015) The extreme ultraviolet and X-ray Sun in Time: high-energy evolutionary tracks of a solar-like star. A&A 577:L3

    Article  ADS  Google Scholar 

  • Valio A, Estrela R, Netto Y, Bravo JP, de Medeiros JR (2017) Activity and rotation of Kepler-17. ApJ 835(2):294

    Article  ADS  Google Scholar 

  • van Saders JL, Ceillier T, Metcalfe TS et al. (2016) Weakened magnetic braking as the origin of anomalously rapid rotation in old field stars. Nature 529(7585):181–184

    Article  ADS  Google Scholar 

  • von Zeipel H (1924) The radiative equilibrium of a rotating system of gaseous masses. MNRAS 84:665–683

    Article  ADS  Google Scholar 

  • Walkowicz LM, Basri GS (2013) Rotation periods, variability properties and ages for Kepler exoplanet candidate host stars. MNRAS 436(2):1883–1895

    Article  ADS  Google Scholar 

  • Weber EJ, Davis J Leverett (1967) The angular momentum of the solar wind. ApJ 148:217–227

    Google Scholar 

  • Xu F, Gu S, Ioannidis P (2021) Starspot evolution, differential rotation, and correlation between chromospheric and photospheric activities on Kepler-411. MNRAS 501(2):1878–1890

    Article  ADS  Google Scholar 

  • Yadav RK, Gastine T, Christensen UR, Reiners A (2015) Formation of starspots in self-consistent global dynamo models: polar spots on cool stars. A&A 573:A68

    Article  ADS  Google Scholar 

  • Zaleski SM, Valio A, Marsden SC, Carter BD (2019) Differential rotation of Kepler-71 via transit photometry mapping of faculae and starspots. MNRAS 484(1):618–630

    Article  ADS  Google Scholar 

  • Zaleski SM, Valio A, Carter BD, Marsden SC (2020) Activity and differential rotation of the early M dwarf Kepler-45 from transit mapping. MNRAS 492(4):5141–5151

    Article  ADS  Google Scholar 

  • Zaleski SM, Valio A, Carter BD, Marsden SC (2022) Dynamo activity of the K dwarf KOI-883 from transit photometry mapping. MNRAS 510(4):5348–5361

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. A. Brown .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Brown, D.J.A. (2024). Characterizing the Rotation of Exoplanet Host Stars. In: Deeg, H.J., Belmonte, J.A. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_206-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_206-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics