Advertisement

Astrometry as an Exoplanet Discovery Method

  • Fabien Malbet
  • Alessandro Sozzetti
Living reference work entry

Abstract

Astrometry consists in measuring the positions and the motions of the astronomical objects on the sky compared to other stars. The increased accuracy of such measurements opens the way to determine not only the proper motions of stars and their parallactic displacements due to Earth motion around the Sun but also the orbital motion caused by the presence of orbiting planets of all nature. Several techniques have been investigated using different types of instrument with limited impact on exoplanet detection so far, but the technique has not only great potentials but is complementary to other discovery methods. The importance of stability and precision of the astrometric measurements over a long period may explain the relative lack of results, but the advent of a space mission like Gaia will certainly change the impact of astrometry in the exoplanet field.

References

  1. Benedict GF, McArthur B, Nelan E et al (1994) Astrometry with hubble space telescope fine guidance sensor number 3: position-mode stability and precision. PASP 106:327–336ADSCrossRefGoogle Scholar
  2. Benedict GF, McArthur B, Chappell DW et al (1999) Interferometric astrometry of proxima centauri and Barnard’s star using hubble space telescope fine guidance sensor 3: detection limits for substellar companions. AJ 118:1086–1100ADSCrossRefGoogle Scholar
  3. Benedict GF, McArthur BE, Forveille T et al (2002) A mass for the extrasolar planet Gliese 876b determined from hubble space telescope fine guidance sensor 3 astrometry and high-precision radial velocities. ApJ 581:L115–L118ADSCrossRefGoogle Scholar
  4. Boss AP, Weinberger AJ, Anglada-Escudé G et al (2009) The Carnegie astrometric planet search program. PASP 121:1218ADSCrossRefGoogle Scholar
  5. Casertano S, Lattanzi MG, Sozzetti A et al (2008) Double-blind test program for astrometric planet detection with Gaia. A&A 482:699–729ADSCrossRefGoogle Scholar
  6. Colavita MM, Wallace JK, Hines BE et al (1999) The palomar testbed interferometer. ApJ 510:505–521ADSCrossRefGoogle Scholar
  7. Delplancke F (2008) The PRIMA facility phase-referenced imaging and micro-arcsecond astrometry. New Astron Rev 52:199–207ADSCrossRefGoogle Scholar
  8. Desort M, Lagrange AM, Galland F et al (2009) Extrasolar planets and brown dwarfs around A-F type stars. VII. θ Cygni radial velocity variations: planets or stellar phenomenon? A&A 506:1469–1476ADSCrossRefGoogle Scholar
  9. Eriksson U, Lindegren L (2007) Limits of ultra-high-precision optical astrometry. Stellar surface structures. A&A 476:1389–1400Google Scholar
  10. Fischer DA, Howard AW, Laughlin GP et al (2014) Exoplanet detection techniques. In: Beuther H et al (eds) Protostars and planets VI. University of Arizona Press, Tucson, pp 715–737Google Scholar
  11. Goullioud R, Catanzarite JH, Dekens FG, Shao M, Marr JC IV (2008) Overview of the SIM planetQuest light mission concept. In: Optical and infrared interferometry, Proceedings of SPIE, vol 7013, p 70134T. https://doi.org/10.1117/12.789988 ADSGoogle Scholar
  12. Heintz WD (1978) Reexamination of suspected unresolved binaries. ApJ 220:931–934ADSCrossRefGoogle Scholar
  13. Hilditch R (2001) Book review: an introduction to close binary stars/Cambridge University Press, 2001. Observatory 121:389ADSGoogle Scholar
  14. Janson M, Brandeker A, Boehm C, Krone-Martins A (2018) Future astrometric space missions for exoplanet science. Springer. In this volumeGoogle Scholar
  15. Lane BF, Muterspaugh MW (2004) Differential astrometry of subarcsecond scale binaries at the palomar testbed interferometer. ApJ 601:1129–1135ADSCrossRefGoogle Scholar
  16. Lane BF, Kuchner MJ, Boden AF, Creech-Eakman M, Kulkarni SR (2000) Direct detection of pulsations of the Cepheid star ζ Gem and an independent calibration of the period-luminosity relation. Nature 407:485–487ADSCrossRefGoogle Scholar
  17. Lazorenko PF (2002) Differential image motion at non-Kolmogorov distortions of the turbulent wave-front. A&A 382:1125–1137ADSCrossRefGoogle Scholar
  18. Lazorenko PF, Mayor M, Dominik M et al (2009) Precision multi-epoch astrometry with VLT cameras FORS1/2. A&A 505:903–918ADSCrossRefGoogle Scholar
  19. Lazorenko PF, Sahlmann J, Ségransan D et al (2011) Astrometric search for a planet around VB 10. A&A 527:A25ADSCrossRefGoogle Scholar
  20. Lindegren L (1980) Atmospheric limitations of narrow-field optical astrometry. A&A 89:41–47ADSGoogle Scholar
  21. Makarov VV, Beichman CA, Catanzarite JH et al (2009) Starspot jitter in photometry, astrometry, and radial velocity measurements. ApJ 707:L73–L76ADSCrossRefGoogle Scholar
  22. Malbet F, Léger A, Shao M et al (2012) High precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the nearby Earth astrometric telescope (NEAT). Exp Astron 34:385–413ADSCrossRefGoogle Scholar
  23. Malbet F, Léger A, Anglada Escudé G et al (2016) Microarcsecond astrometric observatory Theia: from dark matter to compact objects and nearby earths. In: Space telescopes and instrumentation 2016: optical, infrared, and millimeter wave, Proceedings of SPIE, vol 9904, p 99042F. https://doi.org/10.1117/12.2234425
  24. Marr-IV JC, Shao M, Goullioud R (2008) SIM-Lite: progress report. In: Optical and infrared interferometry, Proceedings of SPIE, vol 7013, p 70132M. https://doi.org/10.1117/12.790273 ADSGoogle Scholar
  25. McArthur BE, Benedict GF, Henry GW et al (2014) Astrometry, radial velocity, and photometry: the HD 128311 system remixed with data from HST, HET, and APT. ApJ 795:41ADSCrossRefGoogle Scholar
  26. Melchior P, Spergel D, Lanz A (2018) In the crosshair: astrometric exoplanet detection with WFIRST’s diffraction spikes. AJ 155:102ADSCrossRefGoogle Scholar
  27. Pott JU, Woillez J, Akeson RL et al (2009) Astrometry with the Keck interferometer: the ASTRA project and its science. New Astron Rev 53:363–372ADSCrossRefGoogle Scholar
  28. Pravdo SH, Shaklan SB (2009) An ultracool star’s candidate planet. ApJ 700:623–632ADSCrossRefGoogle Scholar
  29. Pravdo SH, Shaklan SB, Henry T, Benedict GF (2004) Astrometric discovery of GJ 164B. ApJ 617:1323–1329ADSCrossRefGoogle Scholar
  30. Reuyl D, Holmberg E (1943) On the existence of a third component in the system 70 Ophiuchi. ApJ 97:41ADSCrossRefGoogle Scholar
  31. Sahlmann J (2012) Observing exoplanet populations with high-precision astrometry. PhD thesis, Observatoire de Genève, Université de GenèveGoogle Scholar
  32. Sahlmann J, Lazorenko PF, Ségransan D et al (2016) The mass of planet GJ 676A b from ground-based astrometry. A planetary system with two mature gas giants suitable for direct imaging. A&A 595:A77ADSCrossRefGoogle Scholar
  33. Shao M, Colavita MM (1992) Potential of long-baseline infrared interferometry for narrow-angle astrometry. A&A 262:353–358ADSGoogle Scholar
  34. Sozzetti A (2010) Detection and characterization of planetary systems with μas astrometry. In: Gozdziewski K, Niedzielski A, Schneider J (eds) EAS publications series, vol 42, pp 55–77. doi:  https://doi.org/10.1051/eas/1042004 CrossRefGoogle Scholar
  35. Sozzetti A, Bruijne J (2018) Space astrometry missions for exoplanet science: gaia and the legacy of hipparcos. Springer. In this volumeGoogle Scholar
  36. Strand KA (1943) 61 Cygni as a triple system. PASP 55:29–32ADSCrossRefGoogle Scholar
  37. Traub WA (2010) Astrometric-radial-velocity and coronagraph-imaging double-blind studies. In: Coudé du Foresto V, Gelino DM, Ribas I (eds) Pathways towards habitable planets. Astronomical society of the pacific conference series, vol 430, p 249Google Scholar
  38. Traub WA, Beichman C, Boden AF et al (2010) Detectability of Earth-like planets in multi-planet systems: preliminary report. In: Gozdziewski K, Niedzielski A, Schneider J (eds) EAS publications series, EAS publications series, vol 42, pp 191–199.  https://doi.org/10.1051/eas/1042022 CrossRefGoogle Scholar
  39. Unwin SC, Shao M, Tanner AM et al (2008) Taking the measure of the Universe: precision astrometry with SIM planetQuest. PASP 120:38ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Grenoble Alpes, CNRS, IPAGGrenobleFrance
  2. 2.INAF, Osservatorio Astrofisico di TorinoPino TorineseItaly

Section editors and affiliations

  • Alexander Wolszczan
    • 1
  1. 1.Department of Astronomy &Astrophysics and Center for Exoplanets &Habitable WorldsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations