Exoplanet Research in the Era of the Extremely Large Telescope (ELT)

  • Florian Rodler
Living reference work entry


With more than 3,700 planets beyond our solar system unveiled, and many thousands waiting to be discovered in the upcoming years, the three extremely large telescopes will dramatically advance the study of the composition, dynamics, and the structure of exoplanet atmospheres in the next decade. The unprecedented size of these telescope will permit high-contrast imaging of planetary companions to host stars in the solar neighborhood at orbital separations closer than 1 AU, and high-dispersion spectrographs will open a window to a detailed investigation of exoplanet atmospheres including weather patterns and cloud properties therein. Being capable of inspecting the atmospheres of terrestrial exoplanets, these telescopes will bring us much closer to the answer of one of the most fundamental questions: does life exist beyond Earth?


  1. Anglada-Escudé G, Amado PJ, Barnes J et al (2016) A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536:437–440ADSCrossRefGoogle Scholar
  2. Beuzit JL, Feldt M, Dohlen K et al (2008) SPHERE: a ’Planet Finder’ instrument for the VLT. In: Ground-based and airborne instrumentation for astronomy II. Proceedings of SPIE, vol 7014, p 701418.
  3. Birkby JL, de Kok RJ, Brogi M et al (2013) Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 μm. MNRAS 436:L35–L39ADSCrossRefGoogle Scholar
  4. Brandl BR, Lenzen R, Pantin E et al (2012) METIS: the thermal infrared instrument for the E-ELT. In: Ground-based and Airborne Instrumentation for Astronomy IV. Proceeding of SPIE, vol 8446, p 84461M.
  5. Brogi M, Snellen IAG, de Kok RJ et al (2012) The signature of orbital motion from the dayside of the planet τ Boötis b. Nature 486:502–504ADSCrossRefGoogle Scholar
  6. Brogi M, de Kok RJ, Albrecht S et al (2016) Rotation and winds of exoplanet HD 189733 b measured with high-dispersion transmission spectroscopy. ApJ 817:106Google Scholar
  7. Charbonneau D, Brown TM, Latham DW, Mayor M (2000) Detection of planetary transits across a sun-like star. ApJ 529:L45–L48ADSCrossRefGoogle Scholar
  8. Charbonneau D, Brown TM, Noyes RW, Gilliland RL (2002) Detection of an extrasolar planet atmosphere. ApJ 568:377–384ADSCrossRefGoogle Scholar
  9. Crossfield IJM (2016) Exoplanet atmospheres and giant ground-based telescopes. ArXiv e-printsGoogle Scholar
  10. Crossfield IJM, Biller B, Schlieder JE et al (2014) A global cloud map of the nearest known brown dwarf. Nature 505:654–656ADSCrossRefGoogle Scholar
  11. de Kok RJ, Birkby J, Brogi M et al (2014) Identifying new opportunities for exoplanet characterisation at high spectral resolution. A&A 561:A150ADSCrossRefGoogle Scholar
  12. Henry GW, Marcy GW, Butler RPVogt SS (2000) A transiting “51 Peg-like” planet. ApJ 529:L41–L44ADSCrossRefGoogle Scholar
  13. Kaltenegger L, Traub WA, Jucks KW (2007) Spectral evolution of an Earth-like planet. ApJ 658:598–616ADSCrossRefGoogle Scholar
  14. Kasper M, Beuzit JL, Verinaud C et al (2010) EPICS: direct imaging of exoplanets with the E-ELT. In: Ground-based and Airborne Instrumentation for Astronomy III. Proceedings of SPIE, vol 7735, pp 77352E–77352E–9.
  15. Kasper M, Arsenault R, Käufl HU et al (2017) NEAR: low-mass planets in α Cen with VISIR. Messenger 169:16–20ADSGoogle Scholar
  16. Kasting JF, Harman CE (2013) Extrasolar planets: inner edge of the habitable zone. Nature 504:221–223ADSCrossRefGoogle Scholar
  17. Konopacky QM, Barman TS, Macintosh BA, Marois C (2013) Detection of carbon monoxide and water absorption lines in an exoplanet atmosphere. Science 339:1398–1401ADSCrossRefGoogle Scholar
  18. Kopparapu RK, Ramirez RM, SchottelKotte J et al (2014) Habitable zones around main-sequence stars: dependence on planetary mass. ApJ 787:L29ADSCrossRefGoogle Scholar
  19. Lagage PO, Pel JW, Authier M et al (2004) Successful commissioning of VISIR: the mid-infrared VLT instrument. Messenger 117:12–16ADSGoogle Scholar
  20. Lovis C, Snellen I, Mouillet D et al (2017) Atmospheric characterization of Proxima b by coupling the SPHERE high-contrast imager to the ESPRESSO spectrograph. A&A 599:A16ADSCrossRefGoogle Scholar
  21. Martins JHC, Figueira P, Santos NC, Lovis C (2013) Spectroscopic direct detection of reflected light from extrasolar planets. MNRAS 436:1215–1224ADSCrossRefGoogle Scholar
  22. Martins JHC, Santos NC, Figueira P, et al (2015) Evidence for a spectroscopic direct detection of reflected light from 51 Pegasi b. A&A 576:134CrossRefGoogle Scholar
  23. Mawet D, Riaud P, Absil O, Surdej J (2005) Annular groove phase mask coronagraph. ApJ 633:1191–1200ADSCrossRefGoogle Scholar
  24. Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378:355–359ADSCrossRefGoogle Scholar
  25. Meadows VS (2017) Reflections on O2 as a biosignature in exoplanetary atmospheres. Astrobiology 17:1022–1052ADSCrossRefGoogle Scholar
  26. Mordasini C, Alibert Y, Georgy C et al (2012) Characterization of exoplanets from their formation. II. The planetary mass-radius relationship. A&A 547:A112ADSCrossRefGoogle Scholar
  27. Pavlov AA, Kasting JF, Brown LL, Rages KA, Freedman R (2000) Greenhouse warming by CH4 in the atmosphere of early Earth. J Geophys Res 105:11,981–11,990ADSCrossRefGoogle Scholar
  28. Pepe FA, Cristiani S, Rebolo Lopez R et al (2010) ESPRESSO: the Echelle spectrograph for rocky exoplanets and stable spectroscopic observations. In: Ground-based and airborne instrumentation for astronomy III. Proceedings of SPIE, vol 7735, p 77350F.
  29. Ricker GR, Winn JN, Vanderspek R et al (2014) Transiting exoplanet survey satellite (TESS). In: Space telescopes and instrumentation 2014: optical, infrared, and millimeter wave. Proceeding of SPIE, vol 9143, p 914320.
  30. Rodler F, López-Morales M (2014) Feasibility studies for the detection of O2 in an Earth-like exoplanet. ApJ 781:54ADSCrossRefGoogle Scholar
  31. Rodler F, Lopez-Morales M ,Ribas I (2012) Weighing the non-transiting hot Jupiter τ boo b. ApJ 753:L25ADSCrossRefGoogle Scholar
  32. Sagan C, Thompson WR, Carlson R, Gurnett D, Hord C (1993) A search for life on Earth from the Galileo spacecraft. Nature 365:715–721ADSCrossRefGoogle Scholar
  33. Schindler TL Kasting JF (2000) Spectral Signatures of Biomarker Gases in Simulated Earth-Like Atmospheres. In: Schürmann B (ed) Darwin and astronomy : the infrared space interferometer. ESA special publication, vol 451. p 159Google Scholar
  34. Seager S (2013) Exoplanet habitability. Science 340:577–581ADSCrossRefGoogle Scholar
  35. Sing DK, Fortney JJ, Nikolov N et al (2016) A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 529:59–62ADSCrossRefGoogle Scholar
  36. Skidmore W, TMT International Science Development Teams Science Advisory Committee T (2015) Thirty meter telescope detailed science case: 2015. Res Astron Astrophys 15:1945ADSCrossRefGoogle Scholar
  37. Snellen I, de Kok R, Birkby JL et al (2015) Combining high-dispersion spectroscopy with high contrast imaging: probing rocky planets around our nearest neighbors. A&A 576:A59ADSCrossRefGoogle Scholar
  38. Snellen IAG, de Kok RJ, de Mooij EJW, Albrecht S (2010) The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 465:1049–1051ADSCrossRefGoogle Scholar
  39. Snellen IAG, de Kok RJ, le Poole R, Brogi M, Birkby J (2013) Finding extraterrestrial life using ground-based high-dispersion spectroscopy. ApJ 764:182ADSCrossRefGoogle Scholar
  40. Snellen IAG, Brandl BR, de Kok RJ et al (2014) Fast spin of the young extrasolar planet β Pictoris b. Nature 509:63–65ADSCrossRefGoogle Scholar
  41. Thatte NA, Clarke F, Bryson I et al (2016) The E-ELT first light spectrograph HARMONI: capabilities and modes. In: Ground-based and airborne instrumentation for astronomy VI. Proceedings of SPIE, vol 9908, p 99081X.
  42. Traub WA, Jucks KW (2002) A possible aeronomy of extrasolar terrestrial planets. Geophysical monograph series, vol 130. American Geophysical Union, Washington, DC, p 369Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.European Southern ObservatoryVitacura, SantiagoChile

Section editors and affiliations

  • Norio Narita
    • 1
    • 2
    • 3
  1. 1.Graduate School of Science, Department of AstronomyUniversity of TokyoTokyoJapan
  2. 2.Exoplanet Detection Project OfficeNational Astronomical Observatory of JapanTokyoJapan
  3. 3.Exoplanet Detection Project OfficeAstrobiology CenterTokyoJapan

Personalised recommendations