Advertisement

Accurate Stellar Parameters for Radial Velocity Surveys

  • Nuno C. Santos
  • Lars A. Buchhave
Living reference work entry

Abstract

The radial velocity (RV) method has provided a large and increasing number of planets orbiting other suns. Together with the successes of ground- and space-based photometry, RVs allow us to routinely characterize in unique detail thousands of exoplanets. In this chapter, we address some of the main challenges and limitations of the RV method, specially those connected with the properties of the planet host stars. However, we also show that the study of stars with planets, specially those detected or characterized through RVs, is providing unique information about the processes of planet formation, evolution, and composition. Finally, the bright future of this method is highlighted.

Notes

Acknowledgements

This work was supported by Fundação para a Ciência e a Tecnologia (FCT, Portugal) through the research grant through national funds and by FEDER through COMPETE2020 by grants UID/FIS/04434/2013 & POCI-01-0145-FEDER-007672 and PTDC/FIS-AST/1526/2014 & POCI-01-0145-FEDER-016886. N.C.S. acknowledge support from FCT through Investigador FCT contract nr. IF/00169/2012/CP0150/CT0002.

References

  1. Adibekyan VZ, Delgado Mena E, Sousa SG et al (2012) Exploring the α-enhancement of metal-poor planet-hosting stars. The Kepler and HARPS samples. A&A 547:A36ADSCrossRefGoogle Scholar
  2. Adibekyan VZ, Figueira P, Santos NC et al (2013) Orbital and physical properties of planets and their hosts: new insights on planet formation and evolution. A&A 560:A51ADSCrossRefGoogle Scholar
  3. Adibekyan V, Santos NC, Figueira P et al (2015) From stellar to planetary composition: galactic chemical evolution of Mg/Si mineralogical ratio. A&A 581:L2ADSCrossRefGoogle Scholar
  4. Adibekyan V, Delgado-Mena E, Figueira P et al (2016a) ζ 2 Reticuli, its debris disk, and its lonely stellar companion ζ 1 Ret. Different Tc trends for different spectra. A&A 591:A34Google Scholar
  5. Adibekyan V, Delgado-Mena E, Figueira P et al (2016b) Abundance trend with condensation temperature for stars with different Galactic birth places. A&A 592:A87ADSCrossRefGoogle Scholar
  6. Aigrain S, Pont F, Fressin F et al (2009) Noise properties of the CoRoT data. A planet-finding perspective. A&A 506:425–429ADSCrossRefGoogle Scholar
  7. Aigrain S, Pont F, Zucker S (2012) A simple method to estimate radial velocity variations due to stellar activity using photometry. MNRAS 419:3147–3158ADSCrossRefGoogle Scholar
  8. Anglada-Escudé G, Amado PJ, Barnes J et al (2016) A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536:437–440ADSCrossRefGoogle Scholar
  9. Baliunas S, Sokoloff D, Soon W (1996) Magnetic field and rotation in lower main-sequence stars: an empirical time-dependent magnetic Bode’s relation? ApJ 457:L99+Google Scholar
  10. Baranne A, Queloz D, Mayor M et al (1996) ELODIE: a spectrograph for accurate radial velocity measurements. A&AS 119:373–390ADSCrossRefGoogle Scholar
  11. Basri G, Walkowicz LM, Reiners A (2013) Comparison of Kepler photometric variability with the Sun on different timescales. ApJ 769:37ADSCrossRefGoogle Scholar
  12. Baumann P, Ramírez I, Meléndez J, Asplund M, Lind K (2010) Lithium depletion in solar-like stars: no planet connection. A&A 519:A87ADSCrossRefGoogle Scholar
  13. Bazot M, Vauclair S, Bouchy F, Santos NC (2005) Seismic analysis of the planet-hosting star μ Arae. A&A 440:615–621ADSCrossRefGoogle Scholar
  14. Beaugé C, Nesvorný D (2013) Emerging trends in a period-radius distribution of close-in planets. ApJ 763:12ADSCrossRefGoogle Scholar
  15. Birkby JL, de Kok RJ, Brogi M et al (2013) Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 μm. MNRAS 436:L35–L39ADSCrossRefGoogle Scholar
  16. Boisse I, Bouchy F, Hébrard G et al (2011) Disentangling between stellar activity and planetary signals. A&A 528:A4ADSCrossRefGoogle Scholar
  17. Bond JC, O’Brien DP, Lauretta DS (2010) The compositional diversity of extrasolar terrestrial planets. I. In situ simulations. ApJ 715:1050–1070ADSCrossRefGoogle Scholar
  18. Bonfils X, Delfosse X, Udry S et al (2013) The HARPS search for Southern extra-solar planets. XXXI. The M-dwarf sample. A&A 549:A109ADSCrossRefGoogle Scholar
  19. Bonfils X, Astudillo-Defru N, Díaz R et al (2017) A temperate exo-Earth around a quiet M dwarf at 3.4 parsecs. ArXiv e-printsGoogle Scholar
  20. Boss AP (1997) Giant planet formation by gravitational instability. Science 276:1836–1839ADSCrossRefGoogle Scholar
  21. Bouchy F, Pepe F, Queloz D (2001) Fundamental photon noise limit to radial velocity measurements. A&A 374:733–739ADSCrossRefGoogle Scholar
  22. Bouchy F, Doyon R, Artigau É et al (2017) Near-infraRed planet searcher to join HARPS on the ESO 3.6-metre telescope. The Messenger 169:21–27Google Scholar
  23. Brogi M, Snellen IAG, de Kok RJ et al (2012) The signature of orbital motion from the dayside of the planet τ Boötis b. Nature 486:502–504ADSCrossRefGoogle Scholar
  24. Buchhave LA, Latham DW (2015) The metallicities of stars with and without transiting planets. ApJ 808:187. http://adsabs.harvard.edu/abs/2015ApJ...808..187B ADSCrossRefGoogle Scholar
  25. Buchhave LA, Latham DW, Johansen A et al (2012) An abundance of small exoplanets around stars with a wide range of metallicities. Nature 486:375–377ADSCrossRefGoogle Scholar
  26. Buchhave LA, Bizzarro M, Latham DW et al (2014) Three regimes of extrasolar planet radius inferred from host star metallicities. Nature 509(7502):593–595. http://www.nature.com/nature/journal/v509/n7502/full/nature13254.html ADSCrossRefGoogle Scholar
  27. Buchhave LA, Dressing CD, Dumusque X et al (2016) A 1.9 Earth radius rocky planet and the discovery of a non-transiting planet in the Kepler-20 system. AJ 152:160ADSCrossRefGoogle Scholar
  28. Butler RP, Tinney CG, Marcy GW et al (2001) Two new planets from the Anglo-Australian planet search. ApJ 555:410–417ADSCrossRefGoogle Scholar
  29. Campbell B, Walker GAH, Yang S (1988) A search for substellar companions to solar-type stars. ApJ 331:902–921ADSCrossRefGoogle Scholar
  30. Courcol B, Bouchy F, Deleuil M (2016) An upper boundary in the mass-metallicity plane of exo-Neptunes. MNRAS 461:1841–1849ADSCrossRefGoogle Scholar
  31. Cumming A, Marcy GW, Butler RP (1999) The lick planet search: detectability and mass thresholds. ApJ 526:890–915ADSCrossRefGoogle Scholar
  32. Cunha D, Figueira P, Santos NC, Lovis C, Boué G (2012) Impact of stellar companions on precise radial velocities. ArXiv e-printsGoogle Scholar
  33. Cunha D, Santos NC, Figueira P et al (2014) Impact of micro-telluric lines on precise radial velocities and its correction. A&A 568:A35ADSCrossRefGoogle Scholar
  34. Davenport JRA, Kipping DM, Sasselov D, Matthews JM, Cameron C (2016) MOST observations of our nearest neighbor: flares on Proxima Centauri. ApJ 829:L31ADSCrossRefGoogle Scholar
  35. Dawson RI, Murray-Clay RA (2013) Giant planets orbiting metal-rich stars show signatures of planet-planet interactions. ApJ 767:L24ADSCrossRefGoogle Scholar
  36. Delfosse X, Donati JF, Kouach D et al (2013) World-leading science with SPIRou – the nIR spectropolarimeter/high-precision velocimeter for CFHT. In: Cambresy L, Martins F, Nuss E, Palacios A (eds) SF2A-2013: proceedings of the annual meeting of the French society of astronomy and astrophysics, pp 497–508Google Scholar
  37. Delgado Mena E, Israelian G, González Hernández JI et al (2010) Chemical clues on the formation of planetary systems: C/O versus Mg/Si for HARPS GTO sample. ApJ 725:2349–2358ADSCrossRefGoogle Scholar
  38. Delgado Mena E, Israelian G, González Hernández JI et al (2014) Li depletion in solar analogues with exoplanets. Extending the sample. A&A 562:A92ADSCrossRefGoogle Scholar
  39. Dorn C, Khan A, Heng K et al (2015) Can we constrain the interior structure of rocky exoplanets from mass and radius measurements? A&A 577:A83ADSCrossRefGoogle Scholar
  40. Dorn C, Hinkel NR, Venturini J (2017) Bayesian analysis of interiors of HD 219134b, Kepler-10b, Kepler-93b, CoRoT-7b, 55 Cnc e, and HD 97658b using stellar abundance proxies. A&A 597:A38CrossRefGoogle Scholar
  41. Dressing CD, Charbonneau D, Dumusque X et al (2015) The mass of Kepler-93b and the composition of terrestrial planets. ApJ 800:135ADSCrossRefGoogle Scholar
  42. Dumusque X, Lovis C, Ségransan D et al (2011) The HARPS search for Southern extra-solar planets. XXX. Planetary systems around stars with solar-like magnetic cycles and short-term activity variation. A&A 535:A55ADSCrossRefGoogle Scholar
  43. Dumusque X, Pepe F, Lovis C et al (2012) An Earth-mass planet orbiting α Centauri B. Nature 491:207–211ADSCrossRefGoogle Scholar
  44. Faria JP, Haywood RD, Brewer BJ et al (2016) Uncovering the planets and stellar activity of CoRoT-7 using only radial velocities. A&A 588:A31ADSCrossRefGoogle Scholar
  45. Figueira P, Marmier M, Bonfils X et al (2010a) Evidence against the young hot-Jupiter around BD +20 1790. A&A 513:L8ADSCrossRefGoogle Scholar
  46. Figueira P, Pepe F, Melo CHF et al (2010b) Radial velocities with CRIRES. Pushing precision down to 5–10 m/s. A&A 511:A55ADSCrossRefGoogle Scholar
  47. Figueira P, Santos NC, Pepe F, Lovis C, Nardetto N (2013) Line-profile variations in radial-velocity measurements. Two alternative indicators for planetary searches. A&A 557:A93ADSCrossRefGoogle Scholar
  48. Fischer DA, Valenti J (2005) The planet-metallicity correlation. ApJ 622:1102–1117ADSCrossRefGoogle Scholar
  49. Fischer DA, Anglada-Escude G, Arriagada P et al (2016) State of the field: extreme precision radial velocities. PASP 128(6):066,001Google Scholar
  50. Ford EB, Fabrycky DC, Steffen JH et al (2012) Transit timing observations from Kepler. II. Confirmation of two multiplanet systems via a non-parametric correlation analysis. ApJ 750:113Google Scholar
  51. Fortier A, Beck T, Benz W et al (2014) CHEOPS: a space telescope for ultra-high precision photometry of exoplanet transits. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 9143, p 2. https://doi.org/10.1117/12.2056687
  52. Fortney JJ, Marley MS, Barnes JW (2007) Planetary radii across five orders of magnitude in mass and stellar insolation: application to transits. ApJ 659:1661–1672ADSCrossRefGoogle Scholar
  53. Frank EA, Meyer BS, Mojzsis SJ (2014) A radiogenic heating evolution model for cosmochemically Earth-like exoplanets. Icarus 243:274–286ADSCrossRefGoogle Scholar
  54. Galland F, Lagrange AM, Udry S et al (2005) Extrasolar planets and brown dwarfs around A-F type stars. II. A planet found with ELODIE around the F6V star HD33564. A&A 444:L21–L24ADSCrossRefGoogle Scholar
  55. Gilliland RL, Chaplin WJ, Dunham EW et al (2011) Kepler mission stellar and instrument noise properties. ApJS 197:6ADSCrossRefGoogle Scholar
  56. Gomes da Silva J, Santos NC, Bonfils X et al (2012) Long-term magnetic activity of a sample of M-dwarf stars from the HARPS program . II. Activity and radial velocity. A&A 541:A9ADSCrossRefGoogle Scholar
  57. Gonzalez G (1997) The stellar metallicity-giant planet connection. MNRAS 285:403–412ADSCrossRefGoogle Scholar
  58. González Hernández JI, Delgado-Mena E, Sousa SG et al (2013) Searching for the signatures of terrestrial planets in F-, G-type main-sequence stars. A&A 552:A6ADSCrossRefGoogle Scholar
  59. Guillot T, Santos NC, Pont F et al (2006) A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars. A&A 453:L21–L24ADSCrossRefGoogle Scholar
  60. Haywood M (2008) A peculiarity of metal-poor stars with planets? A&A 482:673–676ADSCrossRefGoogle Scholar
  61. Haywood RD, Collier Cameron A, Queloz D et al (2014) Planets and stellar activity: hide and seek in the CoRoT-7 system. MNRAS 443:2517–2531ADSCrossRefGoogle Scholar
  62. Hekker S, Snellen IAG, Aerts C et al (2008) Precise radial velocities of giant stars. IV. A correlation between surface gravity and radial velocity variation and a statistical investigation of companion properties. A&A 480:215–222ADSCrossRefGoogle Scholar
  63. Hilditch RW (2001) An introduction to close binary stars. In: Hilditch RW (ed) An Introduction to close binary stars. Cambridge University Press, Cambridge, pp 392. ISBN:0521241065Google Scholar
  64. Howard AW, Sanchis-Ojeda R, Marcy GW et al (2013) A rocky composition for an Earth-sized exoplanet. Nature 503:381–384ADSCrossRefGoogle Scholar
  65. Huber D, Chaplin WJ, Christensen-Dalsgaard J et al (2013) Fundamental properties of Kepler planet-candidate host stars using asteroseismology. ApJ 767:127Google Scholar
  66. Huélamo N, Figueira P, Bonfils X et al (2008) TW ;Hydrae: evidence of stellar spots instead of a hot Jupiter. A&A 489:L9–L13ADSCrossRefGoogle Scholar
  67. Ida S, Lin DNC (2004) Toward a deterministic model of planetary formation. II. The formation and retention of gas giant planets around stars with a range of metallicities. ApJ 616:567–572ADSCrossRefGoogle Scholar
  68. Israelian G, Santos NC, Mayor M, Rebolo R (2001) Evidence for planet engulfment by the star HD82943. Nature 411:163–166ADSCrossRefGoogle Scholar
  69. Israelian G, Delgado Mena E, Santos NC et al (2009) Enhanced lithium depletion in Sun-like stars with orbiting planets. Nature 462:189–191ADSCrossRefGoogle Scholar
  70. Johnson JA, Butler RP, Marcy GW et al (2007) A new planet around an M dwarf: revealing a correlation between exoplanets and stellar mass. ApJ 670:833–840ADSCrossRefGoogle Scholar
  71. Jurgenson C, Fischer D, McCracken T et al (2016) EXPRES: a next generation RV spectrograph in the search for Earth-like worlds. vol 9908, p 99086T. https://doi.org/10.1117/12.2233002. http://adsabs.harvard.edu/abs/2016SPIE.9908E..6TJ
  72. Kennedy GM, Kenyon SJ (2008) Planet formation around stars of various masses: the snow line and the frequency of giant planets. ApJ 673:502–512ADSCrossRefGoogle Scholar
  73. Lissauer JJ, Dawson RI, Tremaine S (2014) Advances in exoplanet science from Kepler. Nature 513:336–344ADSCrossRefGoogle Scholar
  74. Maldonado J, Villaver E (2017) Searching for chemical signatures of brown dwarf formation. ArXiv e-printsADSCrossRefGoogle Scholar
  75. Martins JHC, Santos NC, Figueira P et al (2015) Evidence for a spectroscopic direct detection of reflected light from <ASTROBJ>51 Pegasi b</ASTROBJ>. A&A 576:A134Google Scholar
  76. Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378:355–357ADSCrossRefGoogle Scholar
  77. Mayor M, Marmier M, Lovis C et al (2011) The HARPS search for Southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. ArXiv e-printsGoogle Scholar
  78. Mayor M, Lovis C, Santos NC (2014) Doppler spectroscopy as a path to the detection of Earth-like planets. Nature 513:328–335ADSCrossRefGoogle Scholar
  79. Meléndez J, Asplund M, Gustafsson B, Yong D (2009) The peculiar solar composition and its possible relation to planet formation. ApJ 704:L66–L70ADSCrossRefGoogle Scholar
  80. Meunier N, Delfosse X (2009) On the correlation between Ca and Hα solar emission and consequences for stellar activity observations. A&A 501:1103–1112ADSCrossRefGoogle Scholar
  81. Mordasini C, Alibert Y, Benz W, Klahr H, Henning T (2012) Extrasolar planet population synthesis. IV. Correlations with disk metallicity, mass, and lifetime. A&A 541:A97ADSCrossRefGoogle Scholar
  82. Mortier A, Santos NC, Sousa S et al (2013) On the functional form of the metallicity-giant planet correlation. A&A 551:A112ADSCrossRefGoogle Scholar
  83. Mulders GD, Pascucci I, Apai D, Frasca A, Molenda-Zakowicz J (2016) A super-solar metallicity for stars with hot rocky exoplanets. AJ 152:187ADSCrossRefGoogle Scholar
  84. Niedzielski A, Villaver E, Nowak G et al (2016) Tracking advanced planetary systems (TAPAS) with HARPS-N. IV. TYC 3667-1280-1: the most massive red giant star hosting a warm Jupiter. A&A 589:L1ADSCrossRefGoogle Scholar
  85. Nissen PE (2015) High-precision abundances of elements in solar twin stars. Trends with stellar age and elemental condensation temperature. A&A 579:A52ADSCrossRefGoogle Scholar
  86. Önehag A, Gustafsson B, Korn A (2014) Abundances and possible diffusion of elements in M 67 stars. A&A 562:A102ADSCrossRefGoogle Scholar
  87. Oshagh M, Boisse I, Boué G et al (2013) SOAP-T: a tool to study the light curve and radial velocity of a system with a transiting planet and a rotating spotted star. A&A 549:A35CrossRefGoogle Scholar
  88. Pepe F, Cameron AC, Latham DW et al (2013) An Earth-sized planet with an Earth-like density. Nature 503:377–380ADSCrossRefGoogle Scholar
  89. Pepe F, Ehrenreich D, Meyer MR (2014a) Instrumentation for the detection and characterization of exoplanets. Nature 513:358–366ADSCrossRefGoogle Scholar
  90. Pepe F, Molaro P, Cristiani S et al (2014b) ESPRESSO: the next European exoplanet hunter. Astron Nachr 335:8ADSCrossRefGoogle Scholar
  91. Prato L, Huerta M, Johns-Krull CM et al (2008) A young-planet search in visible and infrared light: DN Tauri, V836 Tauri, and V827 Tauri. ApJL 687:L103–L106ADSCrossRefGoogle Scholar
  92. Queloz D, Mayor M, Weber L et al (2000) The CORALIE survey for Southern extra-solar planets. I. A planet orbiting the star Gliese 86. A&A 354:99–102Google Scholar
  93. Queloz D, Henry GW, Sivan JP et al (2001) No planet for HD 166435. A&A 379:279–287ADSCrossRefGoogle Scholar
  94. Quirrenbach A, Amado PJ, Caballero JA et al (2014) CARMENES: blue planets orbiting red dwarfs. In: Booth M, Matthews BC, Graham JR (eds) IAU symposium, vol 299, pp 395–396. https://doi.org/10.1017/S1743921313009071 CrossRefGoogle Scholar
  95. Rafikov RR (2005) Can giant planets form by direct gravitational instability? ApJ 621:L69–L72ADSMathSciNetCrossRefGoogle Scholar
  96. Ramírez I, Asplund M, Baumann P, Meléndez J, Bensby T (2010) A possible signature of terrestrial planet formation in the chemical composition of solar analogs. A&A 521:A33ADSCrossRefGoogle Scholar
  97. Rauer H, Catala C, Aerts C et al (2014) The PLATO 2.0 mission. Exp Astron 38:249–330Google Scholar
  98. Reddy BE, Lambert DL, Laws C, Gonzalez G, Covey K (2002) A search for 6Li in stars with planets. MNRAS 335:1005–1016ADSCrossRefGoogle Scholar
  99. Reffert S, Bergmann C, Quirrenbach A, Trifonov T, Künstler A (2015) Precise radial velocities of giant stars. VII. Occurrence rate of giant extrasolar planets as a function of mass and metallicity. A&A 574:A116ADSCrossRefGoogle Scholar
  100. Reiners A, Joshi N, Goldman B (2012) A catalog of rotation and activity in early-M stars. AJ 143:93ADSCrossRefGoogle Scholar
  101. Ricker GR, Latham DW, Vanderspek RK et al (2010) Transiting exoplanet survey satellite (TESS). In: American astronomical society meeting abstracts #215. Bulletin of the American astronomical society, vol 42, p 450.06Google Scholar
  102. Saar SH, Donahue RA (1997) Activity-related radial velocity variation in cool stars. ApJ 485: 319–+ADSCrossRefGoogle Scholar
  103. Santerne A, Díaz RF, Almenara JM et al (2015) PASTIS: Bayesian extrasolar planet validation – II. Constraining exoplanet blend scenarios using spectroscopic diagnoses. MNRAS 451: 2337–2351Google Scholar
  104. Santerne A, Moutou C, Tsantaki M et al (2016) SOPHIE velocimetry of Kepler transit candidates. XVII. The physical properties of giant exoplanets within 400 days of period. A&A 587:A64CrossRefGoogle Scholar
  105. Santos NC, Mayor M, Naef D et al (2000) The CORALIE survey for Southern extra-solar planets. IV. Intrinsic stellar limitations to planet searches with radial-velocity techniques. A&A 361:265–272Google Scholar
  106. Santos NC, Israelian G, Mayor M (2001) The metal-rich nature of stars with planets. A&A 373:1019–1031ADSCrossRefGoogle Scholar
  107. Santos NC, Mayor M, Naef D et al (2002) The CORALIE survey for Southern extra-solar planets. IX. A 1.3-day period brown dwarf disguised as a planet. A&A 392:215–229ADSCrossRefGoogle Scholar
  108. Santos NC, Israelian G, Mayor M (2004) Spectroscopic [Fe/H] for 98 extra-solar planet-host stars. Exploring the probability of planet formation. A&A 415:1153–1166ADSCrossRefGoogle Scholar
  109. Santos NC, Gomes da Silva J, Lovis C, Melo C (2010) Do stellar magnetic cycles influence the measurement of precise radial velocities? A&A 511:A54+ADSCrossRefGoogle Scholar
  110. Santos NC, Sousa SG, Mortier A et al (2013) SWEET-cat: a catalogue of parameters for stars with exoplanETs. I. New atmospheric parameters and masses for 48 stars with planets. A&A 556:A150ADSCrossRefGoogle Scholar
  111. Santos NC, Mortier A, Faria JP et al (2014) The HARPS search for Southern extra-solar planets. XXXV. The interesting case of HD 41248: stellar activity, no planets? A&A 566:A35ADSCrossRefGoogle Scholar
  112. Santos NC, Adibekyan V, Mordasini C et al (2015) Constraining planet structure from stellar chemistry: the cases of CoRoT-7, Kepler-10, and Kepler-93. A&A 580:L13ADSCrossRefGoogle Scholar
  113. Santos NC, Adibekyan V, Dorn C et al (2017a) Constraining planet structure and composition from stellar chemistry: trends in different stellar populations. ArXiv e-printsADSCrossRefGoogle Scholar
  114. Santos NC, Adibekyan V, Figueira P et al (2017b) Observational evidence for two distinct giant planet populations. A&A 603:A30ADSCrossRefGoogle Scholar
  115. Sato B, Ando H, Kambe E et al (2003) A planetary companion to the G-type giant star HD 104985. ApJ 597:L157–L160ADSCrossRefGoogle Scholar
  116. Schneider J, Dedieu C, Le Sidaner P, Savalle R, Zolotukhin I (2011) Defining and cataloging exoplanets: the exoplanet.eu database. A&A 532:A79ADSCrossRefGoogle Scholar
  117. Setiawan J, Rodmann J, da Silva L et al (2005) A substellar companion around the intermediate-mass giant star HD 11977. A&A 437:L31–L34ADSCrossRefGoogle Scholar
  118. Smette A, Sana H, Noll S et al (2015) Molecfit: a general tool for telluric absorption correction. I. Method and application to ESO instruments. A&A 576:A77ADSCrossRefGoogle Scholar
  119. Smith VV, Cunha K, Lazzaro D (2001) The abundance distribution in the extrasolar-planet host star HD 19994. AJ 121:3207–3218ADSCrossRefGoogle Scholar
  120. Sousa SG, Santos NC, Israelian G, Mayor M, Udry S (2011) Spectroscopic stellar parameters for 582 FGK stars in the HARPS volume-limited sample. Revising the metallicity-planet correlation. A&A 533:A141+ADSCrossRefGoogle Scholar
  121. Thiabaud A, Marboeuf U, Alibert Y, Leya I, Mezger K (2015) Elemental ratios in stars vs planets. A&A 580:A30ADSCrossRefGoogle Scholar
  122. Torres G, Konacki M, Sasselov DD, Jha S (2004) Testing blend scenarios for extrasolar transiting planet candidates. I. OGLE-TR-33: a false positive. ApJ 614:979–989ADSCrossRefGoogle Scholar
  123. Triaud AHMJ (2011) The time dependence of hot Jupiters’ orbital inclinations. A&A 534:L6ADSCrossRefGoogle Scholar
  124. Udry S, Mayor M, Naef D et al (2000) The coralie survey for Southern extra-solar planets. ii. the short-period planetary companions to hd 75289 and hd 130322. A&A 356:590–598. http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2000A%26A...356..590U&db_key=AST
  125. Veyette MJ, Muirhead PS, Mann AW et al (2017) A physically motivated and empirically calibrated method to measure effective temperature, metallicity, and Ti abundance of M dwarfs. ArXiv e-printsADSCrossRefGoogle Scholar
  126. Vigan A, Bonavita M, Biller B et al (2017) The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. IV. Gravitational instability rarely forms wide, giant planets. A&A 603:A3CrossRefGoogle Scholar
  127. Wang J, Fischer DA (2015) Revealing a universal planet-metallicity correlation for planets of different sizes around solar-type stars. AJ 149:14ADSCrossRefGoogle Scholar
  128. Winn JN, Fabrycky D, Albrecht S, Johnson JA (2010) Hot stars with hot Jupiters have high obliquities. ApJ 718:L145–L149ADSCrossRefGoogle Scholar
  129. Wyttenbach A, Ehrenreich D, Lovis C, Udry S, Pepe F (2015) Spectrally resolved detection of sodium in the atmosphere of HD189733b with the HARPS spectrograph. ArXiv e-printsGoogle Scholar
  130. Zhu W, Wang J, Huang C (2016) Dependence of small planet frequency on stellar metallicity hidden by their prevalence. ApJ 832:196ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Astrofísica e Ciências do EspaçoUniversidade do Porto, CAUPPortoPortugal
  2. 2.Departamento de Física e AstronomiaFaculdade de Ciências, Universidade do PortoPortoPortugal
  3. 3.Centre for Star and Planet Formation, Natural History Museum of Denmark & Niels Bohr InstituteUniversity of CopenhagenCopenhagen KDenmark

Section editors and affiliations

  • Hans Kjeldsen
    • 1
  1. 1.Stellar Astrophysics CentreAarhus UniversityAarhusDenmark

Personalised recommendations