Exotic Forms of Life on Other Worlds

  • Louis N. Irwin
Living reference work entry


The majority of exoplanets discovered to date, and nearly all the other planets and moons in our solar system, differ significantly from the geophysical conditions on Earth. This necessarily means that habitats on other worlds vary substantially from those with which we are familiar. Organic evolution under the different selective pressures in those alien environments may be expected to give rise to forms of life that are exotic by comparison with our own. Many forms of life may lie beyond the reach of light from their central star due to distance or subsurface sequestration, requiring other sources of energy. Life that could float among the clouds in dense atmospheres might assume sizes and morphologies of remarkable dimensions. Some life could be reminiscent of microbial forms on Earth but remain quiescent in soil or rock until seasonal transitions or the periodic passage of a terminator between frigid darkness and scorching daylight temporarily brings them to life. Cells bounded by amphiphilic membranes stable in hydrocarbon solvents may thrive in the petrochemical seas of worlds too cold for the existence of liquid water. Finally, structural entities capable of self-assembly and energy consumption may populate alien habitats, despite lacking anything like the cellular organization of life on Earth. Exotic forms of life clearly may be found well beyond the limits of any zone deemed habitable merely by the potential for water in liquid form.


Acetylene Acidophiles Atmosphere Azotosomes Ecosystem Enceladus Europa Evolutionary trajectory Extraterrestrial intelligence Gaia hypothesis Habitability Io Lithotrophs Mars Mercury Methanogens Microbes Nitriles Photoautotrophs Self-Assembly Solvents - Polar Solvents - Nonpolar Titan Zeolites 


  1. Barlow NG (1997) Mars. In: Shirley JH, Fairbridge RW (eds) Encyclopedia of planetary sciences. Chapman & Hall, London, pp 430–432CrossRefGoogle Scholar
  2. Beck CHM, Irwin LN (2016) The evolutionary imperative: why change happens, where it leads, and how we might survive. CCB Publishing, VancouverGoogle Scholar
  3. Ben Zion MY, He X, Maass CC, Sha R, Seeman NC, Chaikin PM (2017) Self-assembled three-dimensional chiral colloidal architecture. Science 358:633–636ADSCrossRefGoogle Scholar
  4. Bowen TC, Noble RD, Falconer JL (2004) Fundamentals and applications of pervaporation through zeolite membranes. J Membr Sci 245(1):1–33CrossRefGoogle Scholar
  5. Cairns-Smith AG (1982) Genetic takeover. Cambridge University Press, LondonGoogle Scholar
  6. Carr MH (1996) Water on mars. Oxford University Press, OxfordGoogle Scholar
  7. Coustenis A, Lorenz RD (1999) Titan. In: Weissman PR, McFadden L-A, Johnson TV (eds) Encyclopedia of the solar system, 1st edn. Academic, New York, pp 377–404Google Scholar
  8. Davis WL, McKay CP (1996) Origins of life: a comparison of theories and application to Mars. Orig Life Evol Biosph 26:61–73ADSCrossRefGoogle Scholar
  9. Evers CH, Luiken JA, Bolhuis PG, Kegel WK (2016) Self-assembly of microcapsules via colloidal bond hybridization and anisotropy. Nature 534:364–368. ADSCrossRefGoogle Scholar
  10. Feinberg G, Shapiro R (1980) Life beyond earth – the intelligent Earthling’s guide to life in the universe. William Morrow and Company, New YorkGoogle Scholar
  11. Grinspoon DH (2003) Lonely planets: the natural philosophy of alien life, 1st edn. HarperCollins, New YorkGoogle Scholar
  12. Hand E (2011) Venus scientists fear neglect. Nature 477:145. ADSCrossRefGoogle Scholar
  13. Hoyle F (1983) The intelligent universe. Michael Joseph, LondonGoogle Scholar
  14. Hudson RL, Moore MH (2004) Reactions of nitriles in ice’s relevant to Titan, comets, and the interstellar medium: formation of cyanate ion, ketenimines, and isonitriles. Icarus 172(2):466–478ADSCrossRefGoogle Scholar
  15. Hunten DM (1999) Venus: atmosphere. In: Weissman PR, McFadden L-A, Johnson TV (eds) Encyclopedia of the solar system, 1st edn. Academic, New York, pp 147–159Google Scholar
  16. Irwin LN, Schulze-Makuch D (2001) Assessing the plausibility of life on other worlds. Astrobiology 1(2):143–160ADSCrossRefGoogle Scholar
  17. Irwin LN, Schulze-Makuch D (2011) Cosmic biology: how life could evolve on other worlds, 1st edn. Praxis, New YorkCrossRefGoogle Scholar
  18. Kargel J (2004) Mars – a warmer, wetter planet. Praxis Publishing, ChichesterGoogle Scholar
  19. Lovelock JE (1979) Gaia: a new look at life on earth. Oxford University Press, OxfordGoogle Scholar
  20. Lovelock JE (1995) New statements on the Gaia theory. Microbiologia 11(3):295–304Google Scholar
  21. McKay CP (2016) Titan as the abode of life. Life 6(1).
  22. McKay CP, Smith HD (2005) Possibilities for methanogenic life in liquid methane on the surface of Titan. Icarus 178(1):274–276ADSCrossRefGoogle Scholar
  23. Mendez A (2017) Exoplanets catalogue – planetary habitability laboratory, University of Puerto Rico at Arecibo. Accessed 22 Dec 2017
  24. Miyakawa S, Joshi PC, Gaffey MJ et al (2006) Studies in the mineral and salt-catalyzed formation of RNA oligomers. Orig Life Evol Biosph 36(4):343–361. ADSCrossRefGoogle Scholar
  25. Morowitz H, Sagan C (1967) Life in the clouds of Venus? Nature 215(9):1259–1260. ADSCrossRefGoogle Scholar
  26. Moskowitz C (2014) Surf’s up on titan. Sci Am 310(6):20ADSCrossRefGoogle Scholar
  27. Percec V, Wilson DA, Leowanawat P et al (2010) Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures. Science 328(5981):1009–1014. ADSCrossRefGoogle Scholar
  28. Phillips T (2014) Water detected on dwarf planet Ceres. In: Phillips T (ed) Science@NASA.
  29. Prettyman TH, Yamashita N, Toplis MJ et al (2017) Extensive water ice within Ceres’ aqueously altered regolith: evidence from nuclear spectroscopy. Science 355:55–59. ADSCrossRefGoogle Scholar
  30. Raulin F (2008) Planetary science: organic lakes on Titan. Nature 454:587–589ADSCrossRefGoogle Scholar
  31. Sagan C (1961) The planet Venus. Science 133:849–858ADSCrossRefGoogle Scholar
  32. Sagan C, Salpeter EE (1976) Particles, environments, and possible ecologies in the Jovian atmosphere. Astrophys J 32(4):737–755ADSCrossRefGoogle Scholar
  33. Schulze-Makuch D, Grinspoon DH (2005) Biologically enhanced energy and carbon cycling on titan? Astrobiology 5(4):560–567ADSCrossRefGoogle Scholar
  34. Schulze-Makuch D, Irwin LN (2002) Reassessing the possibility of life on Venus: proposal for an astrobiology mission. Astrobiology 2(2):197–202ADSCrossRefGoogle Scholar
  35. Schulze-Makuch D, Irwin LN (2004) Life in the universe: expectations and constraints, 1st edn. Springer, BerlinGoogle Scholar
  36. Schulze-Makuch D, Irwin LN (2006) Exotic forms of life in the universe. Naturwissenschaften 93(4):155–172ADSCrossRefGoogle Scholar
  37. Schulze-Makuch D, Irwin LN (2008) Life in the universe: expectations and constraints, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  38. Schulze-Makuch D, Irwin LN (2018) Life in the universe: expectations and constraints, 3rd edn. Springer, BerlinGoogle Scholar
  39. Schulze-Makuch D, Guan H, Irwin LN, Vega E (2002a) Redefining life: an ecological, thermodynamic, and bioinformatic approach. In: Fundamentals of life, Editions Scientifiques et Medicales. Elsevier SAS, Amsterdam, pp 169–179Google Scholar
  40. Schulze-Makuch D, Irwin LN, Irwin T (2002b) Astrobiological relevance and feasibility of a sample collection mission to the atmosphere of Venus. In: Lacoste H (ed) ESA conference on exo/astrobiology, ESA Publications Division, Graz, AustriaGoogle Scholar
  41. Schulze-Makuch D, Grinspoon DH, Abbas O, Irwin LN, Bullock MA (2004) A sulfur-based survival strategy for putative phototrophic life in the Venusian atmosphere. Astrobiology 4(1):11–18ADSCrossRefGoogle Scholar
  42. Schulze-Makuch D, Dohm JM, Fairen AG, Baker VR, Fink W, Strom RG (2005) Venus, Mars, and the ices on Mercury and the moon: astrobiological implications and proposed mission designs. Astrobiology 5(6):778–795ADSCrossRefGoogle Scholar
  43. Schulze-Makuch D, Irwin LN, Fairén AG (2013) Drastic environmental change and its effects on a planetary biosphere. Icarus 225:275–280CrossRefGoogle Scholar
  44. Slade (1992) Mercury radar imaging: evidence for polar ice. Science 258:635–640ADSCrossRefGoogle Scholar
  45. Smith DJ (2013) Microbes in the upper atmosphere and unique opportunities for astrobiology research. Astrobiology 13:981–990ADSCrossRefGoogle Scholar
  46. Stevenson J, Lunine J, Clancy P (2015) Membrane alternatives in worlds without oxygen: creation of an azotosome. Sci Adv 1(1):e1400067. ADSCrossRefGoogle Scholar
  47. Tamulis A, Tamuliene J, Tamulis V (2003) Ziriakoviene. A quantum mechanical design of molecular computer elements suitable for self-assembling to quantum computing living systems. In: 6th international conference on self-formation, theory and applications, Vilnius, LithuaniaGoogle Scholar
  48. Titus TN, Kieffer HH, Christensen PR (2003) Exposed water ice discovered near the south pole of Mars. Science 299:1048–1051ADSCrossRefGoogle Scholar
  49. Tsytovich VN, Morfill GE, Fortov VE, Gusein-Zade NG, Klumov BA, Vladimirov SV (2007) From plasma crystals and helical structures towards inorganic living matter. New J Phys 9:263. CrossRefGoogle Scholar
  50. Vernadsky IV (1997) The biosphere. Springer, Copernicus, New YorkGoogle Scholar
  51. Vidal C (2016) Stellivore extraterrestrials? Binary stars as living systems. Acta Astronaut 128(Suppl C):251–256. ADSCrossRefGoogle Scholar
  52. Wong WSY, Li M, Nisbet DR, Craig VSJ, Wang Z, Tricoli A (2016) Mimosa origami: a nanostructure-enabled directional self-organization regime of materials. Sci Adv 2(6):e1600417. ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of Texas at El PasoEl PasoUSA

Section editors and affiliations

  • Jean Schneider
    • 1
  1. 1.LUTH, Observatoire de Paris, PSL Research University, CNRSUniversité Paris DiderotMeudonFrance

Personalised recommendations