Advertisement

Future Exoplanet Research: Radio Detection and Characterization

  • J.-M. Griessmeier
Living reference work entry

Abstract

Auroral radio emission from extrasolar planets can constitute a treasure trove of information difficult or impossible to obtain otherwise. For example, radio detection is probably the only method to unambiguously detect exoplanetary magnetic fields (Griessmeier 2015). With this information, one can indirectly infer the planetary structure and interior. To date, no confirmed radio detection has been achieved, even though a certain number of observations have been conducted and a host of theoretical studies have been published. The current status of radio studies of extrasolar planets and their auroral emission has been described in this book (see~“Radio Observations as an Exoplanet Discovery Method” in the chapter by J. Lazio, this volume and see also “Star-Planet Interactions in the Radio Domain: Prospect for Their Detection” in the chapter by P. Zarka, this volume) and elsewhere (e.g., Zarka et al. 2015; Griessmeier 2017). Here, we discuss the developments that are currently ongoing and describe how they could shape the field of exoplanet research in the future.

References

  1. Banazadeh P, Lazio J, Jones D, Scharf DP, Fowler W, Aladangady C (2013) Feasibility analysis of XSOLANTRA: A mission concept to detect exoplanets with an array of CubeSats. In: Proceedings of the 2013 IEEE Aerospace conference.  https://doi.org/10.1109/AERO.2013.6496864
  2. Bentum M et al (2010) Using a satellite swarm for building a space-based radio telescope for low frequencies, 38th COSPAR scientific assembly, Paper#E12–0040-10Google Scholar
  3. Bentum MJ, Boonstra A-J, Baan W (2011) Space-based ultra-long wavelength radio astronomy – an overview of today’s initiatives. In: Proceedings of the general assembly and scientific symposium, 2011XXXth URSI, IEEE conference publications. /http://www.ursi.org/proceedings/procGA11/ursi/J04-2.pdf
  4. Boonstra A-J et al (2010) A low-frequency distributed aperture array for radio astronomy in space, 38th COSPAR scientific assembly, Paper#E12–0023-10Google Scholar
  5. Boonstra AJ, Wise M, van der Marel J, Ruiter M, Arts M, Prinsloo D, Bast J, Kruithof G, Falcke H, Klein-Wolt M, Brinkerink C, Poushaghaghi H, Rotteveel J, Bertels E, Berciano Alba A, Ping J, Chen L, Huang M, Yan Y, Chen X, Zhang M, Wang M, Rothkaehl H (2017) The Netherlands – China low frequency explorer. In: 32nd URSI GASS, Montreal, 19–26 Aug 2017Google Scholar
  6. Cecconi B, Laurens A, Briand C, Girard J, Bucher M, Puy D, Segret B, Bentum M, The NOIRE Team (2016) The noire study. In: Reylé C, Richard J, Cambrésy L, Deleuil M, Pécontal E, Tresse L, Vauglin I (eds) SF2A proceedings 2016, p 237. http://sf2a.eu/proceedings/2016/2016sf2a.conf..0339C.pdf
  7. Cecconi B, Dekkali M, Briand C, Segret B, Girard JNG, Laurens A, Lamy A, Valat D, Delpech M, Bruno M, Gélard P, Bucher M, Nenon Q, Griessmeier J-M, Boonstra A-J, Bentum M, NOIRE Study Report (2017) Towards a low frequency radio interferometer in space, IEEE Aerospace conference 2018 Proceedings, submittedGoogle Scholar
  8. Dewdney P (2015) SKA1 System baseline v2 description, document number SKA-TEL-SKO-0000308. http://skatelescope.org/wp-content/uploads/2014/03/SKA-TEL-SKO-0000308_SKA1_System_Baseline_v2_DescriptionRev01-part-1-signed.pdf
  9. Driscoll P, Olson P (2011) Optimal dynamos in the cores of terrestrial exoplanets: magnetic field generation and detectability. Icarus 213:12ADSCrossRefGoogle Scholar
  10. Fares R, Donati J-F, Moutou C, Jardine MM, Griessmeier J-M, Zarka P, Shkolnik EL, Bohlender D, Catala C, Cameron AC (2010) Searching for star-planet interactions within the magnetosphere of HD 189733. Mon Not R Astron Soc 406:409–419ADSCrossRefGoogle Scholar
  11. Griessmeier J-M (2015) Detection methods and relevance of exoplanetary magnetic fields, in characterizing stellar and exoplanetary environments. In: Lammer H, Khodachenko M (eds) Astrophysics and space science library, vol 411. Springer, Cham, pp 213–237Google Scholar
  12. Griessmeier J-M (2017) The search for radio emission from giant exoplanets. In: Fischer G et al (eds) Planetary radio emissions VIII. Austrian Academy of Sciences Press, ViennaGoogle Scholar
  13. Griessmeier J-M, Motschmann U, Khodachenko M, Rucker HO (2006) In: Kurth WS, Mann G, Rucker HO (eds) The influence of stellar coronal mass ejections on exoplanetary radio emission, dans planetary radio emissions VI. Austrian Academy of Sciences Press, Vienna, pp 571–579Google Scholar
  14. Griessmeier J-M, Preusse S, Khodachenko M, Motschmann U, Mann G, Rucker HO (2007a) Exoplanetary radio emission under different stellar wind conditions. Planet Space Sci 55:618–630ADSCrossRefGoogle Scholar
  15. Griessmeier J-M, Zarka P, Spreeuw H (2007b) Predicting low-frequency radio fluxes of known extrasolar planets. A&A 475:359ADSCrossRefGoogle Scholar
  16. Griessmeier J-M, Zarka P, Girard JN (2011) Observation of planetary radio emissions using large arrays. Radio Sci 46:RS0F09CrossRefGoogle Scholar
  17. Hodosán G, Rimmer PB, Helling C (2016) Is lightning a possible source of the radio emission on HAT-P-11b? MNRAS 461:1222–1226ADSCrossRefGoogle Scholar
  18. Janhunen P, Olsson A, Karlsson R, Griessmeier J-M (2003) Motivation and possibilities of affordable low-frequency radio interferometry in space – applications to exoplanet research and two instrument concepts. arXiv:astro-ph/0305458Google Scholar
  19. Jester S, Falcke H (2009) Science with a lunar low-frequency array: from the dark ages of the universe to nearby exoplanets. New Astron Rev 53:1ADSCrossRefGoogle Scholar
  20. Konovalenko A, Sodin L, Zakharenko V, Zarka P, Ulyanov O, Sidorchuk M, Stepkin S, Tokarsky P, Melnik V, Kalinichenko N, Stanislavsky A, Koliadin V, Shepelev V, Dorovskyy V, Ryabov V, Koval A, Bubnov I, Yerin S, Gridin A, Kulishenko V, Reznichenko A, Bortsov V, Lisachenko V, Reznik A, Kvasov G, Mukha D, Litvinenko G, Khristenko A, Shevchenko VV, Shevchenko VA, Belov A, Rudavin E, Vasylieva I, Miroshnichenko A, Vasilenko N, Olyak M, Mylostna K, Skoryk A, Shevtsova A, Plakhov M, Kravtsov I, Volvach Y, Lytvinenko O, Shevchuk N, Zhouk I, Bovkun V, Antonov A, Vavriv D, Vinogradov V, Kozhin R, Kravtsov A, Bulakh E, Kuzin A, Vasilyev A, Brazhenko A, Vashchishin R, Pylaev O, Koshovyy V, Lozinsky A, Ivantyshin O, Rucker HO, Panchenko M, Fischer G, Lecacheux A, Denis L, Coffre A, Griessmeier J-M, Tagger M, Girard J, Charrier D, Briand C, Mann G (2016) The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp Astron 42:11ADSCrossRefGoogle Scholar
  21. Lamy L, Griessmeier J-M, Zarka P, Girard J, Hess S et al (2014) Search for exoplanetary radio emissions with NenuFAR. In: NenuFAR: instrument description and science case, pp 98–106. https://www.researchgate.net/publication/308806477_NenUFAR_Instrument_description_and_science_case
  22. Lazio TJW, Shkolnik E, Hallinan G et al (2016) Planetary magnetic fields: planetary interiors and habitability. W. M. Keck Institute for Space Studies. Pasadena, CaliforniaGoogle Scholar
  23. Mimoun D et al (2012) Farside explorer: unique science from a mission to the farside of the moon. Exp Astron 33:529ADSCrossRefGoogle Scholar
  24. Mottez F, Zarka P (2014) Radio emissions from pulsar companions: a refutable explanation for galactic transients and fast radio bursts. A&A 569:A86ADSCrossRefGoogle Scholar
  25. Nan R, Li D, Jin C, Wang Q, Zhu L, Zhu W, Zhang H, Yue Y, Qian L (2011) The Five-hundred-meter Aperture Spherical radio Telescope (FAST) project. arXiv:astro-ph/1105.3794Google Scholar
  26. Noyola JP, Satyal S, Musielak ZE (2014) Detection of exomoons through observation of radio emissions. ApJ 791:25ADSCrossRefGoogle Scholar
  27. Noyola JP, Satyal S, Musielak ZE (2016) On the radio detection of multiple-exomoon systems due to plasma torus sharing. ApJ 821:97ADSCrossRefGoogle Scholar
  28. Reiners A, Christensen UR (2010) A magnetic field evolution scenario for brown dwarfs and giant planets. A&A 522:A13ADSCrossRefGoogle Scholar
  29. Schneider J, Dedieu C, Le Sidaner P, Savalle R, Zolotukhin I (2011) Defining and cataloging exoplanets: the exoplanet.eu database. A&A 532:A79ADSCrossRefGoogle Scholar
  30. See V, Jardine M, Fares R, Donati J-F, Moutou C (2015) Time-scales of close-in exoplanet radio emission variability. MNRAS 450:4323ADSCrossRefGoogle Scholar
  31. Selina R, Murphy E (2017) ngVLA reference design development & performance estimates. ngVLA Memo #17Google Scholar
  32. Swinbank JD, Staley TD, Molenaar GJ, Rol E, Rowlinson A, Scheers B, Spreeuw H, Bell ME, Broderick JW, Carbone D, Garsden H, van der Horst AJ, Law CJ, Wise M, Breton RP, Cendes Y, Corbel S, Eislöffel J, Falcke H, Fender R, Griessmeier J-M, Hessels JWT, Stappers BW, Stewart AJ, Wijers RAMJ, Wijnands R, Zarka P (2015) The LOFAR transients pipeline. Astron Comput 11:25–48ADSCrossRefGoogle Scholar
  33. Turner JD, Griessmeier J-M, Zarka P, Vasylieva I (2017) The search for radio emission from exoplanets using LOFAR low-frequency beam-formed observations: data pipeline and preliminary results on the 55 Cnc system. In: Fischer G et al (eds) Planetary radio emissions VIII. Austrian Academy of Sciences Press, ViennaGoogle Scholar
  34. van Haarlem MP, Wise MW et al (2013) LOFAR: the Low-frequency array. A&A 556:A2ADSCrossRefGoogle Scholar
  35. Zarka P (2007) Plasma interactions of exoplanets with their parent star and associated radio emissions. PSS 55:598CrossRefGoogle Scholar
  36. Zarka P, Farrell WM, Kaiser ML, Blanc E, Kurth WS (2004) Study of solar system planetary lightning with LOFAR. Planet Space Sci 52:1435–1447ADSCrossRefGoogle Scholar
  37. Zarka P, Farrell W, Fischer G, Konovalenko A (2008) Groundbased and space-based radio observations of planetary lightning. Space Sci Rev 137:257–269ADSCrossRefGoogle Scholar
  38. Zarka P, Girard JN, Tagger M, Denis L, The LSS Team: LSS/NENUFAR (2012a) The LOFAR super station project in Nançay. In: Boissier S, de Laverny P, Nardetto N, Samadi R, Valls-Gabaud D, Wozniak H (eds) SF2A proceedings 2012, p 687. http://sf2a.eu/proceedings/2012/2012sf2a.conf..0687Z.pf
  39. Zarka P, Bougeret J-L, Briand C, Cecconi B, Falcke H, Girard J, Griessmeier J-M, Hess S, Klein-Wolt M, Konovalenko A, Lamy L, Mimoun D, Aminaei A (2012b) Planetary and exoplanetary low frequency radio observations from the Moon. PSS 74:156CrossRefGoogle Scholar
  40. Zarka P, Lazio TJW, Hallinan G, “Cradle of Life” WG (2015) Magnetospheric radio emissions from exoplanets with the SKA. PoS(AASKA14)120. http://pos.sissa.it
  41. Zarka P, Tagger M et al (2014) NenuFAR: instrument description and science case. https://www.researchgate.net/publication/308806477_NenUFAR_Instrument_description_and_science_case
  42. Zhu Z, Andrews SM, Isella A (2017) On the radio detectability of circumplanetary discs. arXiv:astro-ph/1708.07287Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.LPC2E-Université d’Orléans/CNRSOrléansFrance
  2. 2.Station de Radioastronomie de NançayObservatoire de Paris, PSL Research University, CNRS, University of Orléans, OSUCNançayFrance

Section editors and affiliations

  • Jean Schneider
    • 1
  1. 1.Paris ObservatoryParisFrance

Personalised recommendations