Occurrence Rates from Direct Imaging Surveys

  • Brendan P. Bowler
  • Eric L. Nielsen
Living reference work entry


The occurrence rate of young giant planets from direct imaging surveys is a fundamental tracer of the efficiency with which planets form and migrate at wide orbital distances. These measurements have progressively converged to a value of about 1% for the most massive planets (≈5–13 MJup) averaged over all stellar masses at separations spanning a few tens to a few hundreds of AU. The subtler statistical properties of this population are beginning to emerge with ever-increasing sample sizes: there is tentative evidence that planets on wide orbits are more frequent around stars that possess debris disks; brown dwarf companions exist at comparable (or perhaps slightly higher) rates as their counterparts in the planetary-mass regime; and the substellar companion mass function appears to be smooth and may extend down to the opacity limit for fragmentation. Within a few years, the conclusion of second-generation direct imaging surveys will enable more definitive interpretations with the ultimate goal of identifying the dominant origin of this population and uncovering its relationship to planets at smaller separations.


  1. Aller KM, Kraus AL, Liu MC et al (2013) A Pan-STARRS + UKIDSS search for young, wide planetary-mass companions in upper scorpius. Astrophys J 773(1):63ADSCrossRefGoogle Scholar
  2. Baraffe I, Chabrier G, Barman TS, Allard F, Hauschildt PH (2003) Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458. A&A 402:701ADSCrossRefGoogle Scholar
  3. Baraffe I, Homeier D, Allard F, Chabrier G (2015) New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit. A&A 577:A42ADSCrossRefGoogle Scholar
  4. Bate MR, Bonnell IA, Bromm V (2003) The formation of a star cluster: predicting the properties of stars and brown dwarfs. MNRAS 339:577ADSCrossRefGoogle Scholar
  5. Best WMJ, Liu MC, Dupuy TJ, Magnier EA (2017) The young L dwarf 2MASS J111932541137466 is a planetary-mass binary . Astrophy J Lett 843(1):L4ADSCrossRefGoogle Scholar
  6. Beust H, Augereau JC, Bonsor A et al (2014) An independent determination of Fomalhaut b’s orbit and the dynamical effects on the outer dust belt. A&A 561:A43CrossRefGoogle Scholar
  7. Biller BA, Close LM, Masciadri E et al (2007) An imaging survey for extrasolar planets around 45 close, young stars with the simultaneous differential imager at the very large telescope and MMT. Astrophys J Suppl Ser 173:143ADSCrossRefGoogle Scholar
  8. Biller BA, Liu MC, Wahhaj Z et al (2010) The gemini NICI planet-finding campaign: discovery of a close substellar companion to the young debris disk star PZ tel. Astrophys J 720(1):L82–L87ADSCrossRefGoogle Scholar
  9. Biller BA, Liu MC, Wahhaj Z et al (2013) The GEMINI/NICI planet-finding campaign: the frequency of planets around young moving group stars. ApJ 777(2):160Google Scholar
  10. Blunt S, Nielsen EL, De Rosa, RJ et al (2017) Orbits for the impatient: a Bayesian rejection-sampling method for quickly fitting the orbits of long-period exoplanets. Astron J 153:229ADSCrossRefGoogle Scholar
  11. Bonavita M, Chauvin G, Desidera S et al (2012) MESS (multi-purpose exoplanet simulation system). A&A 537:A67ADSCrossRefGoogle Scholar
  12. Bonavita M, de Mooij EJW, Jayawardhana R (2013) Quick-MESS: a fast statistical tool for exoplanet imaging surveys. PASP 849(125)Google Scholar
  13. Bonavita M, Desidera S, Thalmann C et al (2016) SPOTS: the search for planets orbiting two stars. A&A 593:A38ADSCrossRefGoogle Scholar
  14. Bowler BP (2016) Imaging extrasolar giant planets. Publ Astron Soc Pac 128(968):102,001ADSCrossRefGoogle Scholar
  15. Bowler BP, Liu MC, Shkolnik EL et al (2012) Planets around low-mass stars (PALMS). I. A substellar companion to the young M DWARF 1RXS J235133.3+312720. Astrophys J 753(2):142ADSCrossRefGoogle Scholar
  16. Bowler BP, Liu MC, Shkolnik EL, Tamura M (2015) Planets around low-mass stars (PALMS). IV. The outer architecture of M dwarf planetary systems. Astrophys J Suppl Ser 216(1):7ADSCrossRefGoogle Scholar
  17. Bowler BP, Liu MC, Mawet D et al (2017) Planets around low-mass stars (PALMS). VI. Discovery of a remarkably red planetary- mass companion to the AB DOR moving group candidate 2MASS J22362452+4751425. Astron J 153(1):1–15ADSCrossRefGoogle Scholar
  18. Brandt TD, McElwain MW, Turner EL et al (2013) New techniques for high-contrast imaging with ADI: the ACORNS-ADI seeds data reduction pipeline. Astrophy J 764(2):183ADSCrossRefGoogle Scholar
  19. Brandt TD, Kuzuhara M, McElwain MW et al (2014a) the moving group targets of the seeds high-contrast imaging survey of exoplanets and disks: results and observations from the first three years. ApJ 786(1):1ADSCrossRefGoogle Scholar
  20. Brandt TD, McElwain MW, Turner EL et al (2014b) A statistical analysis of seeds and other high-contrast exoplanet surveys: massive planets or low-mass brown dwarfs? ApJ 794(2):159ADSCrossRefGoogle Scholar
  21. Cantalloube F, Mouillet D, Mugnier LM et al (2015) Direct exoplanet detection and characterization using the ANDROMEDA method: performance on VLT/NaCo data. A&A 582:A89ADSCrossRefGoogle Scholar
  22. Chauvin G, Lagrange AM, Dumas C et al (2005) Giant planet companion to 2MASSWJ1207334-393254. A&A 438(2):L25–L28ADSCrossRefGoogle Scholar
  23. Chauvin G, Lagrange AM, Bonavita M et al (2010) Deep imaging survey of young, nearby austral stars. A&A 509:A52CrossRefGoogle Scholar
  24. Chauvin G, Vigan A, Bonnefoy M et al. (2015) The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. A&A 573:A127CrossRefGoogle Scholar
  25. Chauvin G, Desidera S, Lagrange AM et al (2017) Discovery of a warm, dusty giant planet around HIP65426. A&A 605:L9Google Scholar
  26. Cheetham AC, Kraus AL, Ireland MJ et al (2015) Mapping the shores of the brown dwarf desert. IV. Ophiuchus. ApJ 813(2):1–12ADSCrossRefGoogle Scholar
  27. Clanton C, Gaudi BS (2016) Synthesizing exoplanet demographics: a single population of long-period planetary companions to M dwarfs consistent with microlensing, radial velocity, and direct imaging surveys. ApJ 819(2):1–42ADSCrossRefGoogle Scholar
  28. Currie T, Muto T, Kudo T et al (2014) Recovery of the candidate protoplanet HD 100546 b with GEMINI/NICI and detection of additional (planet-induced?) disk structure at small separations. Astrophys J Lett 796(2):L30ADSCrossRefGoogle Scholar
  29. De Rosa RJ, Nielsen EL, Blunt SC et al (2015) Astrometric confirmation and preliminary orbital parameters of the young exoplanet 51 Eridani b with the gemini planet imager. Astrophys J Lett 814(1):1–7ADSCrossRefGoogle Scholar
  30. Delorme P, Lagrange AM, Chauvin G et al (2012) High-resolution imaging of young M-type stars of the solar neighbourhood: probing for companions down to the mass of Jupiter. A&A 539:A72ADSCrossRefGoogle Scholar
  31. Delorme P, Gagné J, Girard JH et al (2013) Direct-imaging discovery of a 12–14 Jupiter-mass object orbiting a young binary system of very low-mass stars. A&A 553:L5ADSCrossRefGoogle Scholar
  32. Durisen RH, Boss AP, Mayer L et al (2007) Gravitational instabilities in gaseous protoplanetary disks and implications for giant planet formation. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University Arizona Press, Tucson, p 607Google Scholar
  33. Durkan S, Janson M Carson JC (2016) High contrast imaging with spitzer: constraining the frequency of giant planets out to 1000 AU separations. Astrophys J 824(1):58ADSCrossRefGoogle Scholar
  34. Ehrenreich D, Lagrange AM, Montagnier G et al (2010) Deep infrared imaging of close companions to austral A- and F-type stars. A&A 523:A73CrossRefGoogle Scholar
  35. Feldt M, Olofsson J, Boccaletti A et al (2017) SPHERE/SHINE reveals concentric rings in the debris disk of HIP 73145. A&A 601:A7ADSCrossRefGoogle Scholar
  36. Fortney JJ, Marley MS, Saumon D, Lodders K (2008) Synthetic spectra and colors of young giant planet atmospheres: effects of initial conditions and atmospheric metallicity. Astrophy J 683:1104ADSCrossRefGoogle Scholar
  37. Galicher R, Marois C, Macintosh B et al (2016) The international deep planet survey. A&A 594:A63ADSCrossRefGoogle Scholar
  38. Heinze AN, Hinz PM, Kenworthy M et al (2010) Constraints on long-period planets from ANL- ANDM-band survey of nearby sun-like stars: modeling results. Astrophys J 714(2):1570–1581ADSCrossRefGoogle Scholar
  39. Hinz JL, McCarthy DW, Simons DA et al (2002) A near-infrared, wide-field, proper-motion search for brown dwarfs. Astron J 123:2027ADSCrossRefGoogle Scholar
  40. Ireland MJ, Kraus A, Martinache F, Law N, Hillenbrand LA (2011) Two wide planetary-mass companions to solar-type stars in upper Scorpius. Astrophys J 726:113ADSCrossRefGoogle Scholar
  41. Janson M, Bonavita M, Klahr H et al (2011) High-contrast imaging search for planets and brown dwarfs around the most massive stars in the solar neighborhood. Astrophys J 736(2):89ADSCrossRefGoogle Scholar
  42. Janson M, Brandt TD, Moro-Martín A et al (2013) The seeds direct imaging survey for planets and scattered dust emission in debris disk systems. ApJ 773(1):73ADSCrossRefGoogle Scholar
  43. Jensen-Clem R, Mawet D, Gonzalez CAG et al (2018) A new standard for assessing the performance of high contrast imaging systems. Astron J 155(1):19ADSCrossRefGoogle Scholar
  44. Kalas P, Graham JR, Fitzgerald MP, Clampin M (2013) STIS coronagraphic imaging of Fomalhaut: main belt structure and the orbit of Fomalhaut b. ApJ 775(1):56ADSCrossRefGoogle Scholar
  45. Konopacky QM, Marois C, Macintosh BA et al (2016a) Astrometric monitoring of the HR 8799 planets: orbit constraints from self-consistent measurements . Astron J 152(2):1–18ADSCrossRefGoogle Scholar
  46. Konopacky QM, Rameau J, Duchene G et al (2016b) Discovery of a substellar companion to the nearby debris disk host HR 2562. Astrophys J Lett 829(1):1–7Google Scholar
  47. Kratter K, Lodato G (2016) Gravitational instabilities in circumstellar disks. Ann Rev Astro Astrophys 54(1):271–311ADSCrossRefGoogle Scholar
  48. Lafrenière D, Doyon R, Marois C et al (2007a) The gemini deep planet survey. Astrophy J 670:1367ADSCrossRefGoogle Scholar
  49. Lafrenière D, Marois C, Doyon R, Nadeau D, Artigau É (2007b) A new algorithm for point-spread function subtraction in high-contrast imaging: a demonstration with angular differential imaging. Astrophys J 660:770ADSCrossRefGoogle Scholar
  50. Lafrenière D, Jayawardhana R, van Kerkwijk MH, Brandeker A, Janson M (2014) An adaptive optics multiplicity census of young stars in upper Scorpius. ApJ 785(1):47ADSCrossRefGoogle Scholar
  51. Lagrange AM, Bonnefoy M, Chauvin G et al (2010) A giant planet imaged in the disk of the young star beta pictoris: supporting online material. Science 329(5987):57–59ADSCrossRefGoogle Scholar
  52. Lambrechts M, Johansen A (2012) Rapid growth of gas-giant cores by pebble accretion. A&A 544:A32ADSCrossRefGoogle Scholar
  53. Lannier J, Delorme P, Lagrange AM et al (2016) MASSIVE: a Bayesian analysis of giant planet populations around low-mass stars. A&A 596:A83ADSCrossRefGoogle Scholar
  54. Liu MC, Magnier EA, Deacon NR et al (2013) The extremely red, young L dwarf PSO J318.5338–22.8603: a free-floating planetary-mass analog to directly imaged young gas-giant planets. Astrophys J 777(2):L20ADSCrossRefGoogle Scholar
  55. Lowrance PJ, Schneider G, Kirkpatrick JD et al (2000) A candidate substellar companion to HR 7329. Astrophys J 541:390ADSCrossRefGoogle Scholar
  56. Macintosh B, Graham JR, Ingraham P et al (2014) First light of the Gemini Planet Imager. Proc Natl Acad Sci 111(35):12,661–12,666Google Scholar
  57. Macintosh B, Graham JR, Barman T et al (2015) Discovery and spectroscopy of the young Jovian planet 51 Eri b with the gemini planet imager. Science 350:64Google Scholar
  58. Marleau G-D, Cumming A (2014) Constraining the initial entropy of directly detected planets. MNRAS 437:1378Google Scholar
  59. Marois C, Macintosh B, Barman T et al (2008) Direct imaging of multiple planets orbiting the star HR 8799. Science 322(5906):1348–1352ADSCrossRefGoogle Scholar
  60. Marois C, Macintosh B, Véran JP (2010) Exoplanet imaging with LOCI processing: photometry and astrometry with the new SOSIE pipeline. Proc SPIE 7736:77,361JGoogle Scholar
  61. Marois C, Correia C, Galicher R et al (2014) GPI PSF subtraction with TLOCI: the next evolution in exoplanet/disk high-contrast imaging. In: Marchetti E, Close LM, Veran JP (eds) SPIE astronomical telescopes + instrumentation. SPIE, p 91480UGoogle Scholar
  62. Mawet D, Milli J, Wahhaj Z et al (2014) Fundamental limitations of high contrast imaging set by small sample statistics. ApJ 792(2):97ADSCrossRefGoogle Scholar
  63. McCarthy C, Zuckerman B (2004) The brown dwarf desert at 75–1200 AU. Astron J 127:2871ADSCrossRefGoogle Scholar
  64. Meshkat T, Bailey VP, Su KYL et al (2015a) Searching for planets in holey debris disks with the apodizing phase plate. ApJ 800(1):5ADSCrossRefGoogle Scholar
  65. Meshkat T, Bonnefoy M, Mamajek EE et al (2015b) Discovery of a low-mass companion to the F7V star HD 984. Mon Not RAS 453(3):2379–2387ADSCrossRefGoogle Scholar
  66. Meshkat T, Mawet D, Bryan ML et al (2017) A direct imaging survey of spitzer-detected debris disks: occurrence of giant planets in dusty systems . Astron J 154(6):245ADSCrossRefGoogle Scholar
  67. Metchev SA, Hillenbrand LA (2009) The Palomar/Keck adaptive optics survey of young solar analogs: evidence for a universal companion mass function. Astrophys J Suppl Ser 181(1): 62–109ADSCrossRefGoogle Scholar
  68. Meyer MR, Amara A, Reggiani M, Quanz SP (2017) M dwarf exoplanet surface density distribution: a log-normal fit from 0.07–400 AU. arXivGoogle Scholar
  69. Milli J, Hibon P, Christiaens V et al (2017) Discovery of a low-mass companion inside the debris ring surrounding the F5V star HD206893. A&A 597:L2ADSCrossRefGoogle Scholar
  70. Mordasini C, Marleau G-D, Molliere P (2017) Characterization of exoplanets from their formation. III. The statistics of planetary luminosities. A&A 608:72CrossRefGoogle Scholar
  71. Mugrauer M, Neuh User R, Guenther EW et al (2004) HD?77407 and GJ?577: two new young stellar binaries. A&A 417(3):1031–1038ADSCrossRefGoogle Scholar
  72. Mugrauer M, Vogt N, Neuhäuser R, Schmidt TOB (2010) Direct detection of a substellar companion to the young nearby star PZ Telescopii. A&A 523:L1ADSCrossRefGoogle Scholar
  73. Nakajima T, Oppenheimer BR, Kulkarni SR et al (1995) Discovery of a cool brown dwarf. Nature 378(6556):463–465ADSCrossRefGoogle Scholar
  74. Naud ME, Artigau E, Doyon R et al (2017) PSYM-WIDE: a survey for large-separation planetary-mass companions to late spectral type members of young moving groups. Astron J 154:154–129CrossRefGoogle Scholar
  75. Nielsen EL, Close LM (2010) A uniform analysis of 118 stars with high-contrast imaging: long-period extrasolar giant planets are rare around sun-like stars. Astrophy J 717(2):878–896ADSCrossRefGoogle Scholar
  76. Nielsen EL, Close LM, Biller BA, Masciadri E, Lenzen R (2008) Constraints on extrasolar planet populations from VLT NACO/SDI and MMT SDI and direct adaptive optics imaging surveys: giant planets are rare at large separations. Astrophys J 674:466ADSCrossRefGoogle Scholar
  77. Nielsen EL, Liu MC, Wahhaj Z et al (2013) The gemini NICI planet-finding campaign: the frequency of giant planets around young B and A stars. ApJ 776(1):4ADSCrossRefGoogle Scholar
  78. Nielsen EL, Liu MC, Wahhaj Z et al (2014) The gemini NICI planet-finding campaign: the orbit of the young exoplanet β pictoris b. ApJ 794(2):158ADSCrossRefGoogle Scholar
  79. Nielsen Eric L, De Rosa RJ, Rameau J et al. (2017) Evidence that the directly imaged planet HD 131399 Ab is a background star. AJ 154:218ADSCrossRefGoogle Scholar
  80. Oppenheimer BR, Golimowski DA, Kulkarni SR et al (2001) A coronagraphic survey for companions of stars within 8 Parsecs. Astron J 121:2189ADSCrossRefGoogle Scholar
  81. Pueyo L (2016) Detection and characterization of exoplanets using projections on Karhunen–Loeve eigenimages: forward modeling . ApJ 824(2):1–29CrossRefGoogle Scholar
  82. Pueyo L, Crepp JR, Vasisht G et al (2012) Application of a damped locally optimized combination of images method to the spectral characterization of faint companions using an integral field spectrograph. Astrophys J Suppl Ser 199(1):6ADSCrossRefGoogle Scholar
  83. Rameau J, Chauvin G, Lagrange AM et al (2013a) A survey of young, nearby, and dusty stars conducted to understand the formation of wide-orbit giant planets. A&A 553:A60ADSCrossRefGoogle Scholar
  84. Rameau J, Chauvin G, Lagrange AM et al (2013b) Confirmation of the planet around HD 95086 by direct imaging. Astrophys J 779(2):L26ADSCrossRefGoogle Scholar
  85. Rameau J, Nielsen EL, De Rosa RJ et al (2016) Constraints on the architecture of the HD 95086 planetary system with the gemini planet imager . Astrophys J Lett 822(2):1–7Google Scholar
  86. Reggiani M, Meyer MR, Chauvin G et al (2016) The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. A&A 586:A147ADSCrossRefGoogle Scholar
  87. Ruffio JB, Macintosh B, Wang JJ et al (2017) Improving and assessing planet sensitivity of the GPI exoplanet survey with a forward model matched filter. arXiv (1):14Google Scholar
  88. Samland M, Mollière P, Bonnefoy M et al (2017) Spectral and atmospheric characterization of 51 Eridani b using VLT/SPHERE. A&A 603:A57ADSCrossRefGoogle Scholar
  89. Soummer R, Pueyo L, Larkin J (2012) Detection and characterization of exoplanets and disks using projections on Karhunen-Loève eigenimages. Astrophys J 755(2):L28ADSCrossRefGoogle Scholar
  90. Todorov K, Luhman KL, Mcleod KK (2010) Discovery of a planetary-mass companion to a brown dwarf in Taurus. Astrophys J 714(1):L84–L88ADSCrossRefGoogle Scholar
  91. Uyama T, Hashimoto J, Kuzuhara M et al (2017) The SEEDS high-contrast imaging survey of exoplanets around young stellar objects. Astron J 153(3):1–27CrossRefGoogle Scholar
  92. Veras D, Crepp JR, Ford EB (2009) Formation, survival, and detectability of planets beyond 100 AU. Astrophys J 696:1600ADSCrossRefGoogle Scholar
  93. Vigan A, Patience J, Marois C et al (2012) The international deep planet survey. I. The frequency of wide-orbit massive planets around A-stars. A&A 544:9ADSCrossRefGoogle Scholar
  94. Vigan A, Bonavita M, Biller B et al (2017) The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. A&A 603:A3ADSCrossRefGoogle Scholar
  95. Wagner K, Apai D, Kasper M et al (2016) Direct imaging discovery of a Jovian exoplanet within a triple-star system. ScienceGoogle Scholar
  96. Wahhaj Z, Liu MC, Biller BA et al (2013a) The gemini NICI planet-finding campaign: the companion detection pipeline. ApJ 779(1):80ADSCrossRefGoogle Scholar
  97. Wahhaj Z, Liu MC, Nielsen EL et al (2013b) The gemini planet-finding campaign: the frequency of giant planets around debris disk stars. Astrophys J 773(2):179ADSCrossRefGoogle Scholar
  98. Wahhaj Z, Cieza LA, Mawet D et al (2015) Improving signal-to-noise in the direct imaging of exoplanets and circumstellar disks with MLOCI. A&A 581:A24ADSCrossRefGoogle Scholar
  99. Wang JJ, Graham JR, Pueyo L et al (2016) The orbit and transit prospects for β Pictoris b constrained with one milliarcsecond astrometry . Astron J 152(4):1–16ADSCrossRefGoogle Scholar
  100. Wertz O, Absil O, Gomez Gonzalez CA et al (2017) VLT/SPHERE robust astrometry of the HR8799 planets at milliarcsecond-level accuracy. A&A 598:A83ADSCrossRefGoogle Scholar
  101. Yamamoto K, Matsuo T, Shibai H et al (2013) Direct imaging search for extrasolar planets in the Pleiades. PASJ 65:90ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of AstronomyThe University of Texas at AustinAustinUSA
  2. 2.Kavli Institute for Particle Astrophysics and CosmologyStanford UniversityStanfordUSA

Section editors and affiliations

  • Natalie Batalha
    • 1
  1. 1.NASA Ames Research CenterMountain ViewUSA

Personalised recommendations