Populations of Extrasolar Giant Planets from Transit and Radial Velocity Surveys

Living reference work entry

Abstract

Transit and radial velocity surveys have deeply explored the population of extrasolar giant planets, with hundreds of objects detected to date. All these detections allow to understand their physical properties and to constrain their formation, migration, and evolution mechanism. In this chapter, the observed properties of these planets are presented along with the various populations identified in the data. The occurrence rates of giant exoplanets, as observed in different stellar environment by various surveys, are also reviewed and compared. Finally, the presence and properties of the giant exoplanets are discussed in the regard of the properties of the host star. Over this chapter, the observational constraints are discussed in the context of the dominant planet formation, migration, and evolution scenarios.

References

  1. Adibekyan VZ, Figueira P, Santos NC et al (2013) Orbital and physical properties of planets and their hosts: new insights on planet formation and evolution. A&A 560:A51ADSCrossRefGoogle Scholar
  2. Akeson RL, Chen X, Ciardi D et al (2013) The NASA exoplanet archive: data and tools for exoplanet research. PASP 125:989ADSCrossRefGoogle Scholar
  3. Almenara JM, Damiani C, Bouchy F et al (2015) SOPHIE velocimetry of Kepler transit candidates. XV. KOI-614b, KOI-206b, and KOI-680b: a massive warm Jupiter orbiting a G0 metallic dwarf and two highly inflated planets with a distant companion around evolved F-type stars. A&A 575:A71ADSCrossRefGoogle Scholar
  4. Baglin A, Auvergne M, Boisnard L et al (2006) CoRoT: a high precision photometer for stellar ecolution and exoplanet finding. In: 36th COSPAR scientific assembly, COSPAR meeting, vol 36Google Scholar
  5. Bakos G, Noyes RW, Kovács G et al (2004) Wide-field millimagnitude photometry with the HAT: a tool for extrasolar planet detection. PASP 116:266–277ADSCrossRefGoogle Scholar
  6. Baraffe I, Chabrier G, Fortney J, Sotin C (2014) Planetary internal structures. In: Protostars and planets VI, University of Arizona Press, Tucson, 914:763–786Google Scholar
  7. Batalha NM (2014) Exploring exoplanet populations with NASA’s Kepler Mission. Proc Nat Acad Sci 111:12,647–12,654ADSCrossRefGoogle Scholar
  8. Bayliss DDR, Sackett PD (2011) The frequency of hot Jupiters in the galaxy: results from the SuperLupus survey. ApJ 743:103ADSCrossRefGoogle Scholar
  9. Becker JC, Vanderburg A, Adams FC, Rappaport SA, Schwengeler HM (2015) WASP-47: a hot Jupiter system with two additional planets discovered by K2. ApJ 812:L18ADSCrossRefGoogle Scholar
  10. Borucki W, Koch D, Batalha N et al (2009) KEPLER: search for Earth-size planets in the habitable zone. In: Pont F, Sasselov D, Holman MJ (eds) Transiting planets, IAU symposium, vol 253, pp 289–299. https://doi.org/10.1017/S1743921308026513CrossRefGoogle Scholar
  11. Borucki WJ, Koch DG, Basri G et al (2011) Characteristics of Kepler planetary candidates based on the first data set. ApJ 728:117Google Scholar
  12. Boss AP (2002) Stellar metallicity and the formation of extrasolar gas giant planets. ApJ 567:L149–L153ADSCrossRefGoogle Scholar
  13. Bowler BP, Johnson JA, Marcy GW et al (2010) Retired a stars and their companions. III. Comparing the mass-period distributions of planets around a-type stars and sun-like stars. ApJ 709:396–410ADSCrossRefGoogle Scholar
  14. Brucalassi A, Pasquini L, Saglia R et al (2016) Search for giant planets in M67. III. Excess of hot Jupiters in dense open clusters. A&A 592:L1ADSCrossRefGoogle Scholar
  15. Bruno G, Almenara JM, Barros SCC et al (2015) SOPHIE velocimetry of Kepler transit candidates. XIV. A joint photometric, spectroscopic, and dynamical analysis of the Kepler-117 system. A&A 573:A124CrossRefGoogle Scholar
  16. Chabrier G, Johansen A, Janson M, Rafikov R (2014) Giant planet and brown dwarf formation. In: Protostars and planets VI, University of Arizona Press, Tucson, 914:619–642Google Scholar
  17. Chang SH, Gu PG, Bodenheimer PH (2010) Tidal and magnetic interactions between a hot Jupiter and its host star in the magnetospheric cavity of a protoplanetary disk. ApJ 708:1692–1702ADSCrossRefGoogle Scholar
  18. Coughlin JL, Mullally F, Thompson SE et al (2016) Planetary candidates observed by Kepler. VII. The first fully uniform catalog based on the entire 48-month data set (Q1-Q17 DR24). ApJS 224:12ADSCrossRefGoogle Scholar
  19. Crida A, Bitsch B (2017) Runaway gas accretion and gap opening versus type I migration. Icarus 285:145–154ADSCrossRefGoogle Scholar
  20. Csizmadia S, Hatzes A, Gandolfi D et al (2015) Transiting exoplanets from the CoRoT space mission. XXVIII. CoRoT-33b, an object in the brown dwarf desert with 2:3 commensurability with its host star. A&A 584:A13CrossRefGoogle Scholar
  21. Cumming A, Butler RP, Marcy GW et al (2008) The keck planet search: detectability and the minimum mass and orbital period distribution of extrasolar planets. PASP 120:531ADSCrossRefGoogle Scholar
  22. Damiani C, Meunier JC, Moutou C et al (2016) Stellar classification of CoRoT targets. A&A 595:A95CrossRefGoogle Scholar
  23. Deleuil M, Aigrain S, Moutou C et al (2018, in press) Planets, candidates, and binaries from the CoRoT/Exoplanet program - The CoRoT transit catalog. A&AGoogle Scholar
  24. Delfosse X, Forveille T, Mayor M et al (1998) The closest extrasolar planet. A giant planet around the M4 dwarf GL 876. A&A 338:L67–L70Google Scholar
  25. Dong S, Zheng Z, Zhu Z et al (2014) On the metallicities of Kepler stars. ApJ 789:L3ADSCrossRefGoogle Scholar
  26. Fabrycky DC, Lissauer JJ, Ragozzine D et al (2014) Architecture of Kepler’s multi-transiting systems. II. New investigations with twice as many candidates. ApJ 790:146ADSCrossRefGoogle Scholar
  27. Fischer DA, Valenti J (2005) The planet-metallicity correlation. ApJ 622:1102–1117ADSCrossRefGoogle Scholar
  28. Ford EB (2014) Architectures of planetary systems and implications for their formation. Proc Nat Acad Sci 111:12,616–12,621ADSCrossRefGoogle Scholar
  29. Fressin F, Torres G, Charbonneau D et al (2013) The false positive rate of Kepler and the occurrence of planets. ApJ 766:81ADSCrossRefGoogle Scholar
  30. Gilliland RL, Brown TM, Guhathakurta P et al (2000) A lack of planets in 47 Tucanae from a hubble space telescope search. ApJ 545:L47–L51Google Scholar
  31. Gonzalez G (1997) The stellar metallicity-giant planet connection. MNRAS 285:403–412ADSCrossRefGoogle Scholar
  32. Gould A, Dorsher S, Gaudi BS, Udalski A (2006) Frequency of hot Jupiters and very hot Jupiters from the OGLE-III transit surveys toward the galactic bulge and Carina. Acta Astron 56:1–50Google Scholar
  33. Grether D, Lineweaver CH (2006) How dry is the brown dwarf desert? Quantifying the relative number of planets, brown dwarfs, and stellar companions around nearby sun-like stars. ApJ 640:1051–1062ADSCrossRefGoogle Scholar
  34. Guenther EW, Gandolfi D, Sebastian D et al (2012) Multi-object spectroscopy of stars in the CoRoT fields. II. The stellar population of the CoRoT fields IRa01, LRa01, LRa02, and LRa06. A&A 543:A125Google Scholar
  35. Guo X, Johnson JA, Mann AW et al (2017) The metallicity distribution and hot Jupiter rate of the Kepler field: hectochelle high-resolution spectroscopy for 776 Kepler target stars. ApJ 838:25ADSCrossRefGoogle Scholar
  36. Hartman JD, Gaudi BS, Holman MJ et al (2009) Deep MMT transit survey of the open cluster M37 IV: limit on the fraction of stars with planets as small as 0.3RJ. ApJ 695:336–356ADSCrossRefGoogle Scholar
  37. Hatzes AP, Rauer H (2015) A definition for giant planets based on the mass-density relationship. ApJ 810:L25ADSCrossRefGoogle Scholar
  38. Haywood M (2001) A revision of the solar neighbourhood metallicity distribution. MNRAS 325:1365–1382ADSCrossRefGoogle Scholar
  39. Hébrard G, Arnold L, Forveille T et al (2016) The SOPHIE search for northern extrasolar planets. X. Detection and characterization of giant planets by the dozen. A&A 588:A145ADSCrossRefGoogle Scholar
  40. Holman MJ, Fabrycky DC, Ragozzine D et al (2010) Kepler-9: a system of multiple planets transiting a sun-like star, confirmed by timing variations. Science 330:51ADSCrossRefGoogle Scholar
  41. Howard AW, Marcy GW, Johnson JA et al (2010) The occurrence and mass distribution of close-in Super-Earths, Neptunes, and Jupiters. Science 330:653ADSCrossRefGoogle Scholar
  42. Howard AW, Marcy GW, Bryson ST et al (2012) Planet occurrence within 0.25 AU of solar-type stars from Kepler. ApJS 201:15Google Scholar
  43. Huber D, Silva Aguirre V, Matthews JM et al (2014) Revised stellar properties of Kepler targets for the quarter 1–16 transit detection run. ApJS 211:2ADSCrossRefGoogle Scholar
  44. Johnson JA, Fischer DA, Marcy GW et al (2007) Retired a stars and their companions: exoplanets orbiting three intermediate-mass subgiants. ApJ 665:785–793ADSCrossRefGoogle Scholar
  45. Johnson JA, Aller KM, Howard AW, Crepp JR (2010) Giant planet occurrence in the stellar mass-metallicity plane. PASP 122:905ADSCrossRefGoogle Scholar
  46. Johnson JA, Gazak JZ, Apps K et al (2012) Characterizing the cool KOIs. II. The M dwarf KOI-254 and its hot Jupiter. AJ 143:111ADSCrossRefGoogle Scholar
  47. Knutson HA, Fulton BJ, Montet BT et al (2014) Friends of hot Jupiters. I. A radial velocity search for massive, long-period companions to close-in gas giant planets. ApJ 785:126ADSCrossRefGoogle Scholar
  48. Lloyd JP (2011) “Retired” planet hosts: not so massive, maybe just portly after lunch. ApJ 739:L49ADSCrossRefGoogle Scholar
  49. Lloyd JP (2013) The mass distribution of subgiant planet hosts. ApJ 774:L2ADSCrossRefGoogle Scholar
  50. Marcy GW, Butler RP (2000) Planets orbiting other suns. PASP 112:137–140Google Scholar
  51. Marcy G, Butler RP, Fischer D et al (2005) Observed properties of exoplanets: masses, orbits, and metallicities. Prog Theor Phys Suppl 158:24–42ADSCrossRefGoogle Scholar
  52. Masuda K (2014) Very low density planets around Kepler-51 revealed with transit timing variations and an anomaly similar to a planet-planet eclipse event. ApJ 783:53ADSCrossRefGoogle Scholar
  53. Matsakos T, Königl A (2016) On the origin of the sub-Jovian desert in the orbital-period-planetary-mass plane. ApJ 820:L8ADSCrossRefGoogle Scholar
  54. Mayor M, Queloz D (1995) A Jupiter-Mass companion to a solar-type star. Nature 378:355–359ADSCrossRefGoogle Scholar
  55. Mayor M, Marmier M, Lovis C et al (2011) The HARPS search for Southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. ArXiv e-printsGoogle Scholar
  56. Mazeh T, Holczer T, Faigler S (2016) Dearth of short-period Neptunian exoplanets: a desert in period-mass and period-radius planes. A&A 589:A75ADSCrossRefGoogle Scholar
  57. Morbidelli A, Crida A (2007) The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus 191:158–171ADSCrossRefGoogle Scholar
  58. Mordasini C, Alibert Y, Georgy C et al (2012) Characterization of exoplanets from their formation. II. The planetary mass-radius relationship. A&A 547:A112ADSCrossRefGoogle Scholar
  59. Mortier A, Santos NC, Sousa S et al (2013) On the functional form of the metallicity-giant planet correlation. A&A 551:A112ADSCrossRefGoogle Scholar
  60. Morton TD, Johnson JA (2011) On the low false positive probabilities of Kepler planet candidates. ApJ 738:170ADSCrossRefGoogle Scholar
  61. Morton TD, Bryson ST, Coughlin JL et al (2016) False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives. ApJ 822:86ADSCrossRefGoogle Scholar
  62. Moutou C, Pont F, Barge P et al (2005) Comparative blind test of five planetary transit detection algorithms on realistic synthetic light curves. A&A 437:355–368ADSCrossRefGoogle Scholar
  63. Moutou C, Deleuil M, Guillot T et al (2013) CoRoT: harvest of the exoplanet program. Icarus 226:1625–1634ADSCrossRefGoogle Scholar
  64. Naef D, Mayor M, Beuzit JL et al (2005) The ELODIE planet search: synthetic view of the survey and its global detection threshold. In: Favata F, Hussain GAJ, Battrick B (eds) 13th Cambridge workshop on cool stars, stellar systems and the sun, vol 560. ESA Special Publication, p 833Google Scholar
  65. Nayakshin S (2017) Dawes review 7: the tidal downsizing hypothesis of planet formation. PASA 34:e002Google Scholar
  66. Nayakshin S, Fletcher M (2015) Tidal downsizing model – III. Planets from sub-Earths to brown dwarfs: structure and metallicity preferences. MNRAS 452:1654–1676ADSCrossRefGoogle Scholar
  67. Neveu-VanMalle M, Queloz D, Anderson DR et al (2016) Hot Jupiters with relatives: discovery of additional planets in orbit around WASP-41 and WASP-47. A&A 586:A93ADSCrossRefGoogle Scholar
  68. Pepe F, Molaro P, Cristiani S et al (2014) ESPRESSO: the next European exoplanet hunter. Astron Nachr 335:8ADSCrossRefGoogle Scholar
  69. Pollacco DL, Skillen I, Collier Cameron A et al (2006) The WASP project and the SuperWASP cameras. PASP 118:1407–1418ADSCrossRefGoogle Scholar
  70. Pollack JB, Hubickyj O, Bodenheimer P et al (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124:62–85ADSCrossRefGoogle Scholar
  71. Quinn SN, White RJ, Latham DW et al (2012) Two “b”s in the beehive: the discovery of the first hot Jupiters in an open cluster. ApJ 756:L33ADSCrossRefGoogle Scholar
  72. Rowe JF, Bryson ST, Marcy GW et al (2014) Validation of Kepler’s multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. ApJ 784:45ADSCrossRefGoogle Scholar
  73. Sahu KC, Casertano S, Bond HE et al (2006) Transiting extrasolar planetary candidates in the galactic bulge. Nature 443:534–540ADSCrossRefGoogle Scholar
  74. Santerne A (2014) Professional/Amateur collaborations in exoplanet science. In: European planetary science congress 2014, EPSC Abstracts, vol 9, id EPSC2014-188 9:EPSC2014-188Google Scholar
  75. Santerne A, Díaz RF, Moutou C et al (2012) SOPHIE velocimetry of Kepler transit candidates. VII. A false-positive rate of 35% for Kepler close-in giant candidates. A&A 545:A76ADSCrossRefGoogle Scholar
  76. Santerne A, Moutou C, Tsantaki M et al (2016) SOPHIE velocimetry of Kepler transit candidates. XVII. The physical properties of giant exoplanets within 400 days of period. A&A 587:A64CrossRefGoogle Scholar
  77. Santos NC, Israelian G, Mayor M (2001) The metal-rich nature of stars with planets. A&A 373:1019–1031ADSCrossRefGoogle Scholar
  78. Santos NC, Israelian G, Mayor M, Rebolo R, Udry S (2003) Statistical properties of exoplanets. II. Metallicity, orbital parameters, and space velocities. A&A 398:363–376ADSCrossRefGoogle Scholar
  79. Santos NC, Sousa SG, Mortier A et al (2013) SWEET-Cat: a catalogue of parameters for stars with ExoplanETs. I. New atmospheric parameters and masses for 48 stars with planets. A&A 556:A150ADSCrossRefGoogle Scholar
  80. Schlaufman KC, Winn JN (2016) The occurrence of additional giant planets inside the water-ice line in systems with hot Jupiters: evidence against high-eccentricity migration. ApJ 825:62ADSCrossRefGoogle Scholar
  81. Schneider J, Dedieu C, Le Sidaner P, Savalle R, Zolotukhin I (2011) Defining and cataloging exoplanets: the exoplanet.eu database. A&A 532:A79ADSCrossRefGoogle Scholar
  82. Sousa SG, Santos NC, Israelian G, Mayor M, Udry S (2011) Spectroscopic stellar parameters for 582 FGK stars in the HARPS volume-limited sample. Revising the metallicity-planet correlation. A&A 533:A141ADSCrossRefGoogle Scholar
  83. Udry S, Santos NC (2007) Statistical properties of exoplanets. ARA&A 45:397–439ADSCrossRefGoogle Scholar
  84. Udry S, Mayor M, Santos NC (2003) Statistical properties of exoplanets. I. The period distribution: constraints for the migration scenario. A&A 407:369–376ADSCrossRefGoogle Scholar
  85. Valsecchi F, Rasio FA, Steffen JH (2014) From hot Jupiters to super-Earths via Roche Lobe overflow. ApJ 793:L3ADSCrossRefGoogle Scholar
  86. Vidal-Madjar A, Lecavelier des Etangs A, Désert JM et al (2003) An extended upper atmosphere around the extrasolar planet HD209458b. Nature 422:143–146ADSCrossRefGoogle Scholar
  87. Weiss LM, Marcy GW, Rowe JF et al (2013) The mass of KOI-94d and a relation for planet radius, mass, and incident flux. ApJ 768:14ADSCrossRefGoogle Scholar
  88. Winn JN, Sanchis-Ojeda R, Rogers L et al (2017) Absence of a metallicity effect for ultra-short-period planets. ArXiv e-printsADSCrossRefGoogle Scholar
  89. Wright JT, Marcy GW, Howard AW et al (2012) The frequency of hot Jupiters orbiting nearby solar-type stars. ApJ 753:160ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Aix Marseille Univ, CNRS, CNES, LAMMarseilleFrance

Section editors and affiliations

  • Natalie Batalha
    • 1
  1. 1.NASA Ames Research CenterMountain ViewUSA

Personalised recommendations