Skip to main content

Mapping Exoplanets

Abstract

The varied surfaces and atmospheres of planets make them interesting places to live, explore, and study from afar. Unfortunately, the great distance to even the closest exoplanets makes it impossible to resolve their disk with current or near-term technology. It is still possible, however, to deduce spatial inhomogeneities in exoplanets provided that different regions are visible at different times – this can be due to rotation, orbital motion, and occultations by a star, planet, or moon. Astronomers have so far constructed maps of thermal emission and albedo for short-period giant planets. These maps constrain atmospheric dynamics and cloud patterns in exotic atmospheres. In the future, exo-cartography could yield surface maps of terrestrial planets, hinting at the geophysical and geochemical processes that shape them.

This is a preview of subscription content, log in via an institution.

References

  • Abbot DS, Cowan NB, Ciesla FJ (2012) Indication of insensitivity of planetary weathering behavior and habitable zone to surface land fraction. ApJ 756:178

    Article  ADS  Google Scholar 

  • Agol E, Cowan NB, Knutson HA et al (2010) The climate of HD 189733b from fourteen transits and eclipses measured by Spitzer. ApJ 721:1861–1877

    Article  ADS  Google Scholar 

  • Angerhausen D, DeLarme E, Morse JA (2015) A comprehensive study of Kepler phase curves and secondary eclipses: temperatures and albedos of confirmed Kepler giant planets. PASP 127:1113

    Article  ADS  Google Scholar 

  • Armstrong DJ, de Mooij E, Barstow J et al (2016) Variability in the atmosphere of the hot giant planet HAT-P-7 b. Nat Astron 1:0004

    Article  Google Scholar 

  • Beichman C, Benneke B, Knutson H et al (2014) Observations of transiting exoplanets with the James Webb Space Telescope (JWST). PASP 126:1134

    Article  ADS  Google Scholar 

  • Buenzli E, Apai D, Radigan J, Reid IN, Flateau D (2014) Brown dwarf photospheres are patchy: a hubble space telescope near-infrared spectroscopic survey finds frequent low-level variability. ApJ 782:77

    Article  ADS  Google Scholar 

  • Charbonneau D, Deming D (2007) The dynamics-based approach to studying terrestrial exoplanets. arXiv:0706.1047

    Google Scholar 

  • Cowan NB (2015) Water on -and in- terrestrial planets. arXiv:1511.04444

    Google Scholar 

  • Cowan NB, Abbot DS (2014) Water cycling between ocean and mantle: super-Earths need not be waterworlds. ApJ 781:27

    Article  ADS  Google Scholar 

  • Cowan NB, Agol E (2008) Inverting phase functions to map exoplanets. ApJ 678:L129–L132

    Article  ADS  Google Scholar 

  • Cowan NB, Agol E (2011) A model for thermal phase variations of circular and eccentric exoplanets. ApJ 726:82

    Article  ADS  Google Scholar 

  • Cowan NB, Strait TE (2013) Determining reflectance spectra of surfaces and clouds on exoplanets. ApJ 765:L17

    Article  ADS  Google Scholar 

  • Cowan NB, Agol E, Meadows VS et al (2009) Alien maps of an ocean-bearing world. ApJ 700:915–923

    Article  ADS  Google Scholar 

  • Cowan NB, Robinson T, Livengood TA et al (2011) Rotational variability of Earth’s polar regions: implications for detecting snowball planets. ApJ 731:76

    Article  ADS  Google Scholar 

  • Cowan NB, Abbot DS, Voigt A (2012a) A false positive for ocean glint on exoplanets: the latitude-Albedo effect. ApJ 752:L3

    Article  ADS  Google Scholar 

  • Cowan NB, Machalek P, Croll B et al (2012b) Thermal phase variations of WASP-12b: defying predictions. ApJ 747:82

    Article  ADS  Google Scholar 

  • Cowan NB, Voigt A, Abbot DS (2012c) Thermal phases of Earth-like planets: estimating thermal inertia from eccentricity, obliquity, and diurnal forcing. ApJ 757:80

    Article  ADS  Google Scholar 

  • Cowan NB, Fuentes PA, Haggard HM (2013) Light curves of stars and exoplanets: estimating inclination, obliquity and albedo. MNRAS 434:2465–2479

    Article  ADS  Google Scholar 

  • Cowan NB, Greene T, Angerhausen D et al (2015) Characterizing transiting planet atmospheres through 2025. PASP 127:311

    Article  ADS  Google Scholar 

  • Cowan NB, Chayes V, Bouffard É, Meynig M, Haggard HM (2017) Odd harmonics in exoplanet photometry: weather or artifact? MNRAS 467:747–757

    ADS  Google Scholar 

  • Crossfield IJM, Biller B, Schlieder JE et al (2014) A global cloud map of the nearest known brown dwarf. Nature 505:654–656

    Article  ADS  Google Scholar 

  • de Kok RJ, Stam DM, Karalidi T (2011) Characterizing exoplanetary atmospheres through infrared polarimetry. ApJ 741:59

    Article  ADS  Google Scholar 

  • de Wit J, Gillon M, Demory BO, Seager S (2012) Towards consistent mapping of distant worlds: secondary-eclipse scanning of the exoplanet HD 189733b. A&A 548:A128

    Article  ADS  Google Scholar 

  • Demory BO, de Wit J, Lewis N et al (2013) Inference of inhomogeneous clouds in an exoplanet atmosphere. ApJ 776:L25

    Article  ADS  Google Scholar 

  • Demory BO, Gillon M, de Wit J et al (2016) A map of the large day-night temperature gradient of a super-Earth exoplanet. Nature 532:207–209

    Article  ADS  Google Scholar 

  • Dobbs-Dixon I, Agol E, Burrows A (2012) The impact of circumplantary jets on transit spectra and timing offsets for hot Jupiters. ApJ 751:87

    Article  ADS  Google Scholar 

  • Dobbs-Dixon I, Agol E, Deming D (2015) Spectral eclipse timing. ApJ 815:60

    Article  ADS  Google Scholar 

  • Esteves LJ, De Mooij EJW, Jayawardhana R (2013) Optical phase curves of Kepler exoplanets. ApJ 772:51

    Article  ADS  Google Scholar 

  • Esteves LJ, De Mooij EJW, Jayawardhana R (2015) Changing phases of alien worlds: probing atmospheres of Kepler planets with high-precision photometry. ApJ 804:150

    Article  ADS  Google Scholar 

  • Foley BJ (2015) The role of plate tectonic-climate coupling and exposed land area in the development of habitable climates on rocky planets. ApJ 812:36

    Article  ADS  Google Scholar 

  • Fujii Y, Kawahara H (2012) Mapping Earth analogs from photometric variability: spin-orbit tomography for planets in inclined orbits. ApJ 755:101

    Article  ADS  Google Scholar 

  • Fujii Y, Kawahara H, Suto Y et al (2010) Colors of a second Earth: estimating the fractional areas of ocean, land, and vegetation of Earth-like exoplanets. ApJ 715:866–880

    Article  ADS  Google Scholar 

  • Fujii Y, Kawahara H, Suto Y et al (2011) Colors of a second Earth. II. Effects of clouds on photometric characterization of Earth-like exoplanets. ApJ 738:184

    Google Scholar 

  • Fujii, Y., Lustig-Yaeger, J., & Cowan, N. B. 2017, arXiv:1708.04886

    Google Scholar 

  • Gaidos E, Williams DM (2004) Seasonality on terrestrial extrasolar planets: inferring obliquity and surface conditions from infrared light curves. New Astron 10:67–77

    Article  ADS  Google Scholar 

  • Gómez-Leal I, Pallé E, Selsis F (2012) Photometric variability of the disk-integrated thermal emission of the Earth. ApJ 752:28

    Article  ADS  Google Scholar 

  • Heng K, Demory BO (2013) Understanding trends associated with clouds in irradiated exoplanets. ApJ 777:100

    Article  ADS  Google Scholar 

  • Kawahara H (2016) Frequency modulation of directly imaged exoplanets: geometric effect as a probe of planetary obliquity. ApJ 822:112

    Article  ADS  Google Scholar 

  • Kawahara H, Fujii Y (2010) Global mapping of Earth-like exoplanets from scattered light curves. ApJ 720:1333–1350

    Article  ADS  Google Scholar 

  • Kawahara H, Fujii Y (2011) Mapping clouds and terrain of Earth-like planets from photometric variability: demonstration with planets in face-on orbits. ApJ 739:L62

    Article  ADS  Google Scholar 

  • Keating, D., & Cowan, N. B. 2016, arXiv:1709.03502

    Google Scholar 

  • Kempton EMR, Bean JL, Parmentier V (2017) An observational diagnostic for distinguishing between clouds and haze in hot exoplanet atmospheres. Astrophys J Lett 845:L20

    Article  ADS  Google Scholar 

  • Knutson HA, Charbonneau D, Allen LE et al (2007) A map of the day-night contrast of the extrasolar planet HD 189733b. Nature 447:183–186

    Article  ADS  Google Scholar 

  • Knutson HA, Charbonneau D, Burrows A, O’Donovan FT, Mandushev G (2009a) Detection of a temperature inversion in the broadband infrared emission spectrum of TrES-4. ApJ 691: 866–874

    Article  ADS  Google Scholar 

  • Knutson HA, Charbonneau D, Cowan NB et al (2009b) Multiwavelength constraints on the day-night circulation patterns of HD 189733b. ApJ 690:822–836

    Article  ADS  Google Scholar 

  • Knutson HA, Lewis N, Fortney JJ et al (2012) 3.6 and 4.5 μm phase curves and evidence for non-equilibrium chemistry in the atmosphere of extrasolar planet HD 189733b. ApJ 754:22

    Google Scholar 

  • Komacek TD, Abbot DS (2016) Effect of surface-mantle water exchange parameterizations on exoplanet ocean depths. ApJ 832:54

    Article  ADS  Google Scholar 

  • Kostov V, Apai D (2013) Mapping directly imaged giant exoplanets. ApJ 762:47

    Article  ADS  Google Scholar 

  • Lewis NK, Knutson HA, Showman AP et al (2013) Orbital phase variations of the eccentric giant planet HAT-P-2b. ApJ 766:95

    Article  ADS  Google Scholar 

  • Louden T, Wheatley PJ (2015) Spatially resolved eastward winds and rotation of HD 189733b. ApJ 814:L24

    Article  ADS  Google Scholar 

  • Majeau C, Agol E, Cowan NB (2012) A Two-dimensional infrared map of the extrasolar planet HD 189733b. ApJ 747:L20

    Article  ADS  Google Scholar 

  • Mandel K, Agol E (2002) Analytic light curves for planetary transit searches. ApJ 580:L171–L175

    Article  ADS  Google Scholar 

  • Marois C, Macintosh B, Barman T et al (2008) Direct imaging of multiple planets orbiting the star HR 8799. Science 322:1348

    Article  ADS  Google Scholar 

  • Maxted PFL, Anderson DR, Doyle AP et al (2013) Spitzer 3.6 and 4.5 μm full-orbit light curves of WASP-18. MNRAS 428:2645–2660

    Article  ADS  Google Scholar 

  • Oakley PHH, Cash W (2009) Construction of an Earth model: analysis of exoplanet light curves and mapping the next Earth with the new worlds observer. ApJ 700:1428–1439

    Article  ADS  Google Scholar 

  • Pallé E, Ford EB, Seager S, Montañés-Rodríguez P, Vazquez M (2008) Identifying the rotation rate and the presence of dynamic weather on extrasolar Earth-like planets from photometric observations. ApJ 676:1319–1329

    Article  ADS  Google Scholar 

  • Parmentier V, Fortney JJ, Showman AP, Morley C, Marley MS (2016) Transitions in the cloud composition of hot Jupiters. ApJ 828:22

    Article  ADS  Google Scholar 

  • Rauscher E, Menou K, Seager S et al (2007) Toward eclipse mapping of hot Jupiters. ApJ 664:1199–1209

    Article  ADS  Google Scholar 

  • Robinson TD, Meadows VS, Crisp D (2010) Detecting oceans on extrasolar planets using the glint effect. ApJ 721:L67–L71

    Article  ADS  Google Scholar 

  • Robinson TD, Meadows VS, Crisp D et al (2011) Earth as an extrasolar planet: earth model validation using EPOXI Earth observations. Astrobiology 11:393–408

    Article  ADS  Google Scholar 

  • Robinson TD, Ennico K, Meadows VS et al (2014) Detection of ocean glint and ozone absorption using LCROSS Earth observations. ApJ 787:171

    Article  ADS  Google Scholar 

  • Russell HN (1906) On the light variations of asteroids and satellites. ApJ 24:1–18

    Article  ADS  Google Scholar 

  • Schwartz JC, Cowan NB (2015) Balancing the energy budget of short-period giant planets: evidence for reflective clouds and optical absorbers. MNRAS 449:4192–4203

    Article  ADS  Google Scholar 

  • Schwartz JC, Sekowski C, Haggard HM, Pallé E, Cowan NB (2016) Inferring planetary obliquity using rotational and orbital photometry. MNRAS 457:926–938

    Article  ADS  Google Scholar 

  • Shporer A, O’Rourke JG, Knutson HA et al (2014) Atmospheric characterization of the hot Jupiter Kepler-13Ab. ApJ 788:92

    Article  ADS  Google Scholar 

  • Snellen IAG, de Kok RJ, de Mooij EJW, Albrecht S (2010) The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 465:1049–1051

    Article  ADS  Google Scholar 

  • Snellen IAG, Brandl BR, de Kok RJ et al (2014) Fast spin of the young extrasolar planet β Pictoris b. Nature 509:63–65

    Article  ADS  Google Scholar 

  • Stevenson KB, Désert JM, Line MR et al (2014) Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy. Science 346:838–841

    Article  ADS  Google Scholar 

  • Sudarsky D, Burrows A, Pinto P (2000) Albedo and reflection spectra of extrasolar giant planets. ApJ 538:885–903

    Article  ADS  Google Scholar 

  • Veras D, Breedt E (2017) Eclipse, transit and occultation geometry of planetary systems at exo-syzygy. MNRAS 468:2672–2683

    Article  ADS  Google Scholar 

  • Wiktorowicz SJ, Stam DM (2015) Polarimetry of Stars and Planetary Systems, Edited by L. Kolokolova, J. Hough, and A. Levasseur-Regourd. ISBN: 978-1-107-04390-9. Cambridge University Press, 2015, p.439

    Google Scholar 

  • Williams PKG, Charbonneau D, Cooper CS, Showman AP, Fortney JJ (2006) Resolving the surfaces of extrasolar planets with secondary eclipse light curves. ApJ 649:1020–1027

    Article  ADS  Google Scholar 

  • Wong I, Knutson HA, Lewis NK et al (2015) 3.6 and 4.5 μm phase curves of the highly irradiated eccentric hot Jupiter WASP-14b. ApJ 811:122

    Google Scholar 

  • Wong I, Knutson HA, Kataria T et al (2016) 3.6 and 4.5 μm Spitzer phase curves of the highly irradiated hot Jupiters WASP-19b and HAT-P-7b. ApJ 823:122

    Google Scholar 

  • Zellem RT, Lewis NK, Knutson HA et al (2014) The 4.5 μm full-orbit phase curve of the hot Jupiter HD 209458b. ApJ 790:53

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to International Space Science Institute for hosting the Exo-Cartography workshops. N.B. Cowan acknowledges support from the McGill Space Institute and l’Institut de recherche sur les exoplanètes. Y. Fujii was supported by the NASA Postdoctoral Program at the NASA Goddard Institute for Space Studies, administered by Universities Space Research Association, as well as by the NASA Astrobiology Program through the Nexus for Exoplanet System Science. The authors thank J.C. Schwartz for creating many of the figures, as well as T. Bell, D. Keating, E. Rauscher, and T. Robinson for providing useful feedback on an earlier draft of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas B. Cowan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Cowan, N.B., Fujii, Y. (2017). Mapping Exoplanets. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_147-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_147-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Mapping Exoplanets
    Published:
    19 January 2021

    DOI: https://doi.org/10.1007/978-3-319-30648-3_147-2

  2. Original

    Mapping Exoplanets
    Published:
    20 September 2017

    DOI: https://doi.org/10.1007/978-3-319-30648-3_147-1