Connecting Planetary Composition with Formation

  • Ralph E. Pudritz
  • Alex J. Cridland
  • Matthew Alessi
Living reference work entry


The rapid advances in observations of the different populations of exoplanets, the characterization of their host stars and the links to the properties of their planetary systems, the detailed studies of protoplanetary disks, and the experimental study of the interiors and composition of the massive planets in our solar system provide a firm basis for the next big question in planet formation theory. How do the elemental and chemical compositions of planets connect with their formation? The answer to this requires that the various pieces of planet formation theory be linked together in an end-to-end picture that is capable of addressing these large data sets. In this review, we discuss the critical elements of such a picture and how they affect the chemical and elemental makeup of forming planets. Important issues here include the initial state of forming and evolving disks, chemical and dust processes within them, the migration of planets and the importance of planet traps, the nature of angular momentum transport processes involving turbulence and/or MHD disk winds, planet formation theory, and advanced treatments of disk astrochemistry. All of these issues affect, and are affected by, the chemistry of disks which is driven by X-ray ionization of the host stars. We discuss how these processes lead to a coherent end-to-end model and how this may address the basic question.



We thank Phil Armitage for his thoughtful referee report. We also thank Yasuhiro Hasegawa, Ted Bergin, Til Birnstiel, Christoph Mordasini, Thomas Henning, Dimitry Semenov, Nikku Madhusudhan, Richard Nelson, and Colin McNally for enlightening discussions during the course of this project. This research was supported by a Discovery Grant to REP from the Natural Sciences and Engineering Research Council of Canada (NSERC), as well as by NSERC postgraduate scholarships to AC and MA.


  1. Alessi M, Pudritz RE (2018) MNRAS, Formation of planetary populations I: Metallicity and envelope opacity effects, in press. (archive # 1804.01148)Google Scholar
  2. Agúndez M, Parmentier V, Venot O, Hersant F Selsis F (2014) Pseudo 2D chemical model of hot-Jupiter atmospheres: application to HD 209458b and HD 189733b. A&A 564:A73ADSCrossRefGoogle Scholar
  3. Alessi M, Pudritz RE, Cridland AJ (2017) On the formation and chemical composition of super Earths. MNRAS 464:428–452ADSCrossRefGoogle Scholar
  4. Alibert Y (2017) Maximum mass of planetary embryos that formed in core-accretion models. A&A 606:A69ADSCrossRefGoogle Scholar
  5. Alibert Y, Mordasini C, Benz W (2011) Extrasolar planet population synthesis. III. Formation of planets around stars of different masses. A&A 526:A63CrossRefGoogle Scholar
  6. ALMA Partnership, Brogan CL, Pérez LM et al (2015) The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region. ApJ 808:L3Google Scholar
  7. Andrews SM, Williams JP (2007) High-resolution submillimeter constraints on circumstellar disk structure. ApJ 659:705–728ADSCrossRefGoogle Scholar
  8. Andrews SM, Wilner DJ, Hughes AM, Qi C, Dullemond CP (2010) Protoplanetary disk structures in Ophiuchus. II. Extension to fainter sources. ApJ 723:1241–1254ADSCrossRefGoogle Scholar
  9. Armitage PJ (2010) Astrophysics of planet formation. Cambridge University Press, CambridgeGoogle Scholar
  10. Bai XN (2014) Hall-effect-controlled gas dynamics in protoplanetary disks. I. Wind solutions at the inner disk. ApJ 791:137ADSCrossRefGoogle Scholar
  11. Bai XN (2016) Towards a global evolutionary model of protoplanetary disks. ApJ 821:80ADSCrossRefGoogle Scholar
  12. Bai XN, Stone JM (2013) Wind-driven accretion in protoplanetary disks. I. Suppression of the magnetorotational instability and launching of the magnetocentrifugal wind. ApJ 769:76ADSCrossRefGoogle Scholar
  13. Bai XN, Stone JM (2017) Hall effect-mediated magnetic flux transport in protoplanetary disks. ApJ 836:46ADSCrossRefGoogle Scholar
  14. Balbus SA, Hawley JF (1991) A powerful local shear instability in weakly magnetized disks. I – Linear analysis. II – Nonlinear evolution. ApJ 376:214–233ADSCrossRefGoogle Scholar
  15. Banerjee R, Pudritz RE (2006) Outflows and jets from collapsing magnetized cloud cores. ApJ 641:949–960ADSCrossRefGoogle Scholar
  16. Baraffe I, Chabrier G, Fortney J, Sotin C (2014) Planetary internal structures. In: Beuther B (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 763–786Google Scholar
  17. Batalha NM (2014) Exploring exoplanet populations with NASA’s Kepler mission. Proc Natl Acad Sci 111:12,647–12,654ADSCrossRefGoogle Scholar
  18. Bate MR (2012) Stellar, brown dwarf and multiple star properties from a radiation hydrodynamical simulation of star cluster formation. MNRAS 419:3115–3146ADSCrossRefGoogle Scholar
  19. Bate MR (2018) On the diversity and statistical properties of protostellar discs. MNRAS 475: 5618–5658ADSCrossRefGoogle Scholar
  20. Benz W, Ida S, Alibert Y, Lin D, Mordasini C (2014) Planet population synthesis. In: Beuther B (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 691–713Google Scholar
  21. Bergin EA, Cleeves LI, Gorti U et al (2013) An old disk still capable of forming a planetary system. Nature 493:644–646ADSCrossRefGoogle Scholar
  22. Bergin EA, Cleeves LI, Crockett N, Blake GA (2014) Exploring the origins of carbon in terrestrial worlds. Faraday Discuss 168:61–79ADSCrossRefGoogle Scholar
  23. Bergin EA, Blake GA, Ciesla F, Hirschmann MM, Li J (2015) Tracing the ingredients for a habitable earth from interstellar space through planet formation. Proc Natl Acad Sci 112: 8965–8970ADSCrossRefGoogle Scholar
  24. Bitsch B, Crida A, Morbidelli A, Kley W, Dobbs-Dixon I (2013) Stellar irradiated discs and implications on migration of embedded planets. I. Equilibrium discs. A&A 549:A124ADSCrossRefGoogle Scholar
  25. Bitsch B, Lambrechts M, Johansen A (2015) The growth of planets by pebble accretion in evolving protoplanetary discs. A&A 582:A112ADSCrossRefGoogle Scholar
  26. Blandford RD, Payne DG (1982) Hydromagnetic flows from accretion discs and the production of radio jets. MNRAS 199:883–903ADSzbMATHCrossRefGoogle Scholar
  27. Bodenheimer P, Pollack JB (1986) Calculations of the accretion and evolution of giant planets. The effects of solid cores. Icarus 67:391–408ADSCrossRefGoogle Scholar
  28. Bolton SJ, Lunine J, Stevenson D et al (2017) The Juno mission. Space Sci Rev 213:5–37ADSCrossRefGoogle Scholar
  29. Bond JC, O’Brien DP, Lauretta DS (2010) The compositional diversity of extrasolar terrestrial planets. I. In situ simulations. ApJ 715:1050–1070ADSCrossRefGoogle Scholar
  30. Booth RA, Clarke CJ, Madhusudhan N, Ilee JD (2017) Chemical enrichment of giant planets and discs due to pebble drift. MNRAS 469:3994–4011ADSCrossRefGoogle Scholar
  31. Bosman AD, Bruderer S, van Dishoeck EF (2017a) CO2 infrared emission as a diagnostic of planet-forming regions of disks. A&A 601:A36ADSCrossRefGoogle Scholar
  32. Bosman AD, Tielens AGGM van Dishoeck EF (2017b) Efficiency of radial transport of ices in protoplanetary disks probed with infrared observations: the case of CO_2. ArXiv e-printsGoogle Scholar
  33. Bowler BP (2016) Imaging extrasolar Giant planets. PASP 128(10):102,001ADSCrossRefGoogle Scholar
  34. Brewer JM, Fischer DA, Madhusudhan N (2017) C/O and O/H ratios suggest some hot Jupiters originate beyond the snow line. AJ 153:83ADSCrossRefGoogle Scholar
  35. Brouwers MG, Vazan A, Ormel CW (2017) How cores grow by pebble accretion I. Direct core growth. ArXiv e-printsGoogle Scholar
  36. Butscher T, Duvernay F, Theule P et al (2015) Formation mechanism of glycolaldehyde and ethylene glycol in astrophysical ices from HCO and CH2OH recombination: an experimental study. MNRAS 453:1587–1596ADSCrossRefGoogle Scholar
  37. Chabrier G (2005) The initial mass function: from Salpeter 1955 to 2005. In: Corbelli E, Palla F, Zinnecker H (eds) The initial mass function 50 years later. Astrophysics and space science library, vol 327, p 41. Google Scholar
  38. Chabrier G, Baraffe I (2007) Heat transport in giant (exo)planets: a new perspective. ApJ 661: L81–L84ADSCrossRefGoogle Scholar
  39. Chambers JE (2009) An analytic model for the evolution of a viscous, irradiated disk. ApJ 705:1206–1214ADSCrossRefGoogle Scholar
  40. Chatterjee S, Ford EB (2015) Planetesimal interactions can explain the mysterious period ratios of small near-resonant planets. ApJ 803:33ADSCrossRefGoogle Scholar
  41. Chatterjee S, Ford EB, Matsumura S, Rasio FA (2008) Dynamical outcomes of planet-planet scattering. ApJ 686:580-602ADSCrossRefGoogle Scholar
  42. Chen J, Kipping D (2017) Probabilistic forecasting of the masses and radii of other worlds. ApJ 834:17ADSCrossRefGoogle Scholar
  43. Chiang E, Laughlin G (2013) The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths. MNRAS 431:3444–3455ADSCrossRefGoogle Scholar
  44. Chiang EI, Goldreich P (1997) Spectral energy distributions of T Tauri stars with passive circumstellar disks. ApJ 490:368–376ADSCrossRefGoogle Scholar
  45. Chuang KJ, Fedoseev G, Qasim D et al (2018) Reactive desorption of co hydrogenation products under cold pre-stellar core conditions. Astrophys J 853(2):102. ADSCrossRefGoogle Scholar
  46. Cleeves LI, Adams FC, Bergin EA (2013) Exclusion of cosmic rays in protoplanetary disks: stellar and magnetic effects. ApJ 772:5ADSCrossRefGoogle Scholar
  47. Cleeves LI, Bergin EA, Alexander CMO et al (2014) The ancient heritage of water ice in the solar system. Science 345:1590–1593ADSCrossRefGoogle Scholar
  48. Coleman GAL, Nelson RP (2014) On the formation of planetary systems via oligarchic growth in thermally evolving viscous discs. MNRAS 445:479–499ADSCrossRefGoogle Scholar
  49. Coleman GAL, Nelson RP (2016) Giant planet formation in radially structured protoplanetary discs. MNRAS 460:2779–2795ADSCrossRefGoogle Scholar
  50. Cooper CS, Showman AP (2006) Dynamics and disequilibrium carbon chemistry in hot Jupiter atmospheres, with application to HD 209458b. ApJ 649:1048–1063ADSCrossRefGoogle Scholar
  51. Crida A, Morbidelli A (2007) Cavity opening by a giant planet in a protoplanetary disk and effects on planetary migration. MNRAS 377:1324–1336ADSCrossRefGoogle Scholar
  52. Cridland AJ, Pudritz RE, Alessi M (2016) Composition of early planetary atmospheres – I. Connecting disk astrochemistry to the formation of planetary atmospheres. MNRAS 461:3274–3295ADSCrossRefGoogle Scholar
  53. Cridland AJ, Pudritz RE, Birnstiel T (2017a) Radial drift of dust in protoplanetary discs: the evolution of ice lines and dead zones. MNRAS 465:3865–3878ADSCrossRefGoogle Scholar
  54. Cridland AJ, Pudritz RE, Birnstiel T, Cleeves LI, Bergin EA (2017b) Composition of early planetary atmospheres II: coupled dust and chemical evolution in protoplanetary disks. ArXiv e-printsADSCrossRefGoogle Scholar
  55. Cuzzi JN, Zahnle KJ (2004) Material enhancement in protoplanetary Nebulae by particle drift through evaporation fronts. ApJ 614:490–496ADSCrossRefGoogle Scholar
  56. Dittkrist KM, Mordasini C, Klahr H, Alibert Y, Henning T (2014) Impacts of planet migration models on planetary populations. Effects of saturation, cooling and stellar irradiation. A&A 567:A121CrossRefGoogle Scholar
  57. Duffell PC, Haiman Z, MacFadyen AI, D’Orazio DJ, Farris BD (2014) The migration of gap-opening planets is not locked to viscous disk evolution. ApJ 792:L10ADSCrossRefGoogle Scholar
  58. Dutrey A, Guilloteau S, Simon M (1994) Images of the GG Tauri rotating ring. A&A 286:149–159Google Scholar
  59. Edgar RG (2008) Type II migration: varying planet mass and disc viscosity. ArXiv e-printsGoogle Scholar
  60. Eistrup C, Walsh C, van Dishoeck EF (2016) Setting the volatile composition of (exo)planet-building material. Does chemical evolution in disk midplanes matter? A&A 595:A83Google Scholar
  61. Elser S, Meyer MR, Moore B (2012) On the origin of elemental abundances in the terrestrial planets. Icarus 221:859–874ADSCrossRefGoogle Scholar
  62. Fabrycky D, Tremaine S (2007) Shrinking binary and planetary orbits by Kozai cycles with tidal friction. ApJ 669:1298–1315ADSCrossRefGoogle Scholar
  63. Fabrycky DC, Lissauer JJ, Ragozzine D et al (2014) Architecture of Kepler’s Multi-transiting Systems. II. New investigations with twice as many candidates. ApJ 790:146ADSCrossRefGoogle Scholar
  64. Fang J, Margot JL (2012) Architecture of planetary systems based on Kepler data: number of planets and coplanarity. ApJ 761:92ADSCrossRefGoogle Scholar
  65. Fedele D, Bruderer S, van Dishoeck EF et al (2013) Probing the radial temperature structure of protoplanetary disks with Herschel/HIFI. ApJ 776:L3ADSCrossRefGoogle Scholar
  66. Fischer DA, Valenti J (2005) The planet-metallicity correlation. ApJ 622:1102–1117ADSCrossRefGoogle Scholar
  67. Flock M, Henning T, Klahr H (2012) Turbulence in weakly ionized protoplanetary disks. ApJ 761:95ADSCrossRefGoogle Scholar
  68. Fogel JKJ, Bethell TJ, Bergin EA, Calvet N, Semenov D (2011) Chemistry of a protoplanetary disk with grain settling and Lyα radiation. ApJ 726:29ADSCrossRefGoogle Scholar
  69. Frank A, Ray TP, Cabrit S et al (2014) Jets and outflows from star to cloud: observations confront theory. In: Beuther B (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 451–474Google Scholar
  70. Gammie CF (1996) Linear theory of magnetized, viscous, self-gravitating gas disks. ApJ 462:725ADSCrossRefGoogle Scholar
  71. Gillett FC, Forrest WJ (1973) Spectra of the Becklin-Neugebauer point source and the Kleinmann-Low nebula from 2.8 to 13.5 microns. ApJ 179:483–491ADSCrossRefGoogle Scholar
  72. Goldreich P, Tremaine S (1979) The excitation of density waves at the Lindblad and corotation resonances by an external potential. ApJ 233:857–871ADSMathSciNetCrossRefGoogle Scholar
  73. González-Cataldo F, Wilson HF, Militzer B (2014) Ab initio free energy calculations of the solubility of silica in metallic hydrogen and application to Giant planet cores. ApJ 787:79ADSCrossRefGoogle Scholar
  74. Gorti U, Liseau R, Sándor Z, Clarke C (2016) Disk dispersal: theoretical understanding and observational constraints. Space Sci Rev 205:125–152ADSCrossRefGoogle Scholar
  75. Grasset O, Schneider J, Sotin C (2009) A study of the accuracy of mass-radius relationships for silicate-rich and ice-rich planets up to 100 earth masses. ApJ 693:722–733ADSCrossRefGoogle Scholar
  76. Gressel O, Turner NJ, Nelson RP, McNally CP (2015) Global simulations of protoplanetary disks with Ohmic resistivity and ambipolar diffusion. ApJ 801:84ADSCrossRefGoogle Scholar
  77. Haisch KE Jr, Lada EA, Lada CJ (2001) Disk frequencies and lifetimes in Young clusters. ApJ 553:L153–L156ADSCrossRefGoogle Scholar
  78. Hansen BMS, Murray N (2013) Testing in situ assembly with the Kepler planet candidate sample. ApJ 775:53ADSCrossRefGoogle Scholar
  79. Hartmann L (2008) Masses and mass distributions of protoplanetary disks. Physica Scripta Volume T 130(1):014012ADSCrossRefGoogle Scholar
  80. Hartmann L, Kenyon SJ (1987) High spectral resolution infrared observations of V1057 Cygni. ApJ 322:393–398ADSCrossRefGoogle Scholar
  81. Hasegawa Y (2016) Super-Earths as failed cores in orbital migration traps. ApJ 832:83ADSCrossRefGoogle Scholar
  82. Hasegawa Y, Pudritz RE (2011) The origin of planetary system architectures – I. Multiple planet traps in gaseous discs. MNRAS 417:1236–1259Google Scholar
  83. Hasegawa Y, Pudritz RE (2013) Planetary populations in the mass-period diagram: a statistical treatment of exoplanet formation and the role of planet traps. ApJ 778:78ADSCrossRefGoogle Scholar
  84. Hasegawa Y, Pudritz RE (2014) Planet traps and planetary cores: origins of the planet-metallicity correlation. ApJ 794:25ADSCrossRefGoogle Scholar
  85. Helled R, Bodenheimer P, Podolak M et al (2014) Giant planet formation, evolution, and internal structure. In: Beuther B (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 643–665Google Scholar
  86. Helling C, Woitke P, Rimmer PB et al (2014) Disk evolution, element abundances and cloud properties of young gas giant planets. Life 4:142–173ADSCrossRefGoogle Scholar
  87. Henning T, Semenov D (2013) Chemistry in protoplanetary disks. Chem Rev 113:9016–9042CrossRefGoogle Scholar
  88. Hernández J, Calvet N, Briceño C et al (2007) Spitzer observations of the orion OB1 association: disk census in the low-mass stars. ApJ 671:1784–1799ADSCrossRefGoogle Scholar
  89. Howard AW, Sanchis-Ojeda R, Marcy GW et al (2013) A rocky composition for an Earth-sized exoplanet. Nature 503:381–384ADSCrossRefGoogle Scholar
  90. Howard AW, Marcy GW, Johnson JA et al (2010) The occurrence and mass distribution of close-in super-Earths, Neptunes, and Jupiters. Science 330:653ADSCrossRefGoogle Scholar
  91. Howard AW, Marcy GW, Bryson ST et al (2012) Planet occurrence within 0.25 AU of solar-type stars from Kepler. ApJS 201:15Google Scholar
  92. Ida S, Lin DNC (2004a) Toward a deterministic model of planetary formation. I. A desert in the mass and semimajor axis distributions of extrasolar planets. ApJ 604:388–413Google Scholar
  93. Ida S, Lin DNC (2004b) Toward a deterministic model of planetary formation. II. The formation and retention of gas giant planets around stars with a range of metallicities. ApJ 616:567–572Google Scholar
  94. Ida S, Lin DNC (2005) Toward a deterministic model of planetary formation. III. Mass distribution of short-period planets around stars of various masses. ApJ 626:1045–1060Google Scholar
  95. Ida S, Lin DNC (2008a) Toward a deterministic model of planetary formation. IV. Effects of type I migration. ApJ 673:487–501Google Scholar
  96. Ida S Lin DNC (2008b) Toward a deterministic model of planetary formation. V. Accumulation near the ice line and super-Earths. ApJ 685:584–595Google Scholar
  97. Ikoma M, Nakazawa K, Emori H (2000) Formation of giant planets: dependences on core accretion rate and grain opacity. ApJ 537:1013–1025ADSCrossRefGoogle Scholar
  98. Javoy M (1995) The integral enstatite chondrite model of the Earth. Geophys Res Lett 22:2219–2222ADSCrossRefGoogle Scholar
  99. Johansen A, Oishi JS, Mac Low MM et al (2007) Rapid planetesimal formation in turbulent circumstellar disks. Nature 448:1022–1025ADSCrossRefGoogle Scholar
  100. Johnson JA, Aller KM, Howard AW, Crepp JR (2010) Giant planet occurrence in the stellar mass-metallicity plane. PASP 122:905ADSCrossRefGoogle Scholar
  101. Jørgensen JK, van Dishoeck EF, Visser R et al (2009) PROSAC: a submillimeter array survey of low-mass protostars. II. The mass evolution of envelopes, disks, and stars from the Class 0 through I stages. A&A 507:861–879ADSCrossRefGoogle Scholar
  102. Jørgensen JK, Favre C, Bisschop SE et al (2012) Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA. ApJ 757:L4ADSCrossRefGoogle Scholar
  103. Jurić M, Tremaine S (2008) Dynamical origin of extrasolar planet eccentricity distribution. ApJ 686:603–620ADSCrossRefGoogle Scholar
  104. Klassen M, Pudritz RE, Kuiper R, Peters T Banerjee R (2016) Simulating the formation of massive protostars. I. Radiative feedback and accretion disks. ApJ 823:28ADSCrossRefGoogle Scholar
  105. Kley W, Nelson RP (2012) Planet-disk interaction and orbital evolution. ARA&A 50:211–249ADSCrossRefGoogle Scholar
  106. Kokubo E, Ida S (2002) Formation of protoplanet systems and diversity of planetary systems. ApJ 581:666–680ADSCrossRefGoogle Scholar
  107. Kratter KM, Matzner CD, Krumholz MR (2008) Global models for the evolution of embedded, accreting protostellar disks. ApJ 681:375–390ADSCrossRefGoogle Scholar
  108. Krijt S, Ciesla FJ (2016) Dust diffusion and settling in the presence of collisions: trapping (sub)micron grains in the midplane. ApJ 822:111ADSCrossRefGoogle Scholar
  109. Leconte J, Chabrier G (2012) A new vision of giant planet interiors: impact of double diffusive convection. A&A 540:A20ADSCrossRefGoogle Scholar
  110. Leconte J, Chabrier G (2013) Layered convection as the origin of Saturn’s luminosity anomaly. Nat Geosci 6:347–350ADSCrossRefGoogle Scholar
  111. Lesur G, Kunz MW, Fromang S (2014) Thanatology in protoplanetary discs. The combined influence of Ohmic, Hall, and ambipolar diffusion on dead zones. A&A 566:A56ADSCrossRefGoogle Scholar
  112. Li ZY, Banerjee R, Pudritz RE et al (2014) The earliest stages of star and planet formation: core collapse, and the formation of disks and outflows. In: Beuther B (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 173–194Google Scholar
  113. Ligterink NFW, Coutens A, Kofman V et al (2017) The ALMA-PILS survey: detection of CH3NCO towards the low-mass protostar IRAS 16293-2422 and laboratory constraints on its formation. MNRAS 469:2219–2229ADSCrossRefGoogle Scholar
  114. Lin DNC, Papaloizou J (1986) On the tidal interaction between protoplanets and the primordial solar nebula. II – self-consistent nonlinear interaction. ApJ 307:395–409Google Scholar
  115. Lin DNC, Papaloizou JCB (1993) On the tidal interaction between protostellar disks and companions. In: Levy EH, Lunine JI (eds) In: Beuther B (ed) Protostars and planets III. University of Arizona Press, Tucson, pp 749–835Google Scholar
  116. Lissauer JJ, Ragozzine D, Fabrycky DC et al (2011) Architecture and dynamics of Kepler’s candidate multiple transiting planet systems. ApJS 197:8ADSCrossRefGoogle Scholar
  117. Lozovsky M, Helled R, Rosenberg ED, Bodenheimer P (2017) Jupiter’s formation and its primordial internal structure. ApJ 836:227ADSCrossRefGoogle Scholar
  118. Lynden-Bell D, Pringle JE (1974) The evolution of viscous discs and the origin of the nebular variables. MNRAS 168:603–637ADSCrossRefGoogle Scholar
  119. Lyra W, Paardekooper SJ, Mac Low MM (2010) Orbital migration of low-mass planets in evolutionary radiative models: avoiding catastrophic infall. ApJ 715:L68–L73ADSCrossRefGoogle Scholar
  120. Madhusudhan N, Amin MA, Kennedy GM (2014) Toward chemical constraints on hot Jupiter migration. ApJ 794:L12ADSCrossRefGoogle Scholar
  121. Madhusudhan N, Bitsch B, Johansen A, Eriksson L (2017) Atmospheric signatures of giant exoplanet formation by pebble accretion. MNRAS 469:4102–4115ADSCrossRefGoogle Scholar
  122. Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378:355–359ADSCrossRefGoogle Scholar
  123. McClure MK, Bergin EA, Cleeves LI et al (2016) Mass measurements in protoplanetary disks from hydrogen deuteride. ApJ 831:167ADSCrossRefGoogle Scholar
  124. McNally CP, Nelson RP, Paardekooper SJ, Gressel O, Lyra W (2017) Low mass planet migration in magnetically torqued dead zones – I. Static migration torque. MNRAS 472:1565–1575Google Scholar
  125. Militzer B, Hubbard WB (2013) Ab initio equation of state for hydrogen-helium mixtures with recalibration of the giant-planet mass-radius relation. ApJ 774:148ADSCrossRefGoogle Scholar
  126. Miyake K, Nakagawa Y (1993) Effects of particle size distribution on opacity curves of protoplanetary disks around T Tauri stars. Icarus 106:20ADSCrossRefGoogle Scholar
  127. Mizuno H, Nakazawa K, Hayashi C (1978) Instability of a gaseous envelope surrounding a planetary core and formation of giant planets. Prog Theor Phys 60:699–710ADSCrossRefGoogle Scholar
  128. Mollière P, van Boekel R, Bouwman J et al (2017) Observing transiting planets with JWST. Prime targets and their synthetic spectral observations. A&A 600:A10ADSCrossRefGoogle Scholar
  129. Mordasini C, Klahr H, Alibert Y, Miller N, Henning T (2014) Grain opacity and the bulk composition of extrasolar planets. I. Results from scaling the ISM opacity. A&A 566:A141ADSCrossRefGoogle Scholar
  130. Mordasini C, van Boekel R, Mollière P, Henning T, Benneke B (2016) The imprint of exoplanet formation history on observable present-day spectra of hot Jupiters. ApJ 832:41ADSCrossRefGoogle Scholar
  131. Moriarty J, Madhusudhan N, Fischer D (2014) Chemistry in an evolving protoplanetary disk: effects on terrestrial planet composition. ApJ 787:81ADSCrossRefGoogle Scholar
  132. Öberg KI, Boogert ACA, Pontoppidan KM et al (2011a) The spitzer ice legacy: ice evolution from cores to protostars. ApJ 740:109ADSCrossRefGoogle Scholar
  133. Öberg KI, Murray-Clay R, Bergin EA (2011b) The effects of snowlines on C/O in planetary atmospheres. ApJ 743:L16ADSCrossRefGoogle Scholar
  134. Ormel CW, Paszun D, Dominik C, Tielens AGGM (2009) Dust coagulation and fragmentation in molecular clouds. I. How collisions between dust aggregates alter the dust size distribution. A&A 502:845–869Google Scholar
  135. Owen JE, Ercolano B, Clarke CJ (2011) Protoplanetary disc evolution and dispersal: the implications of X-ray photoevaporation. MNRAS 412:13–25ADSCrossRefGoogle Scholar
  136. Paardekooper SJ, Baruteau C, Crida A, Kley W (2010) A torque formula for non-isothermal type I planetary migration – I. Unsaturated horseshoe drag. MNRAS 401:1950–1964Google Scholar
  137. Papaloizou J, Lin DNC (1984) On the tidal interaction between protoplanets and the primordial solar nebula. I – Linear calculation of the role of angular momentum exchange. ApJ 285: 818–834Google Scholar
  138. Pascucci I, Sterzik M (2009) Evidence for disk photoevaporation driven by the central star. ApJ 702:724–732ADSCrossRefGoogle Scholar
  139. Pasek MA, Milsom JA, Ciesla FJ et al (2005) Sulfur chemistry with time-varying oxygen abundance during solar system formation. Icarus 175:1–14ADSCrossRefGoogle Scholar
  140. Pelletier G, Pudritz RE (1992) Hydromagnetic disk winds in young stellar objects and active galactic nuclei. ApJ 394:117–138ADSCrossRefGoogle Scholar
  141. Pepe F, Mayor M, Queloz D et al (2004) The HARPS search for southern extra-solar planets. I. HD 330075 b: A new “hot Jupiter”. A&A 423:385–389ADSCrossRefGoogle Scholar
  142. Pignatale FC, Maddison ST, Taquet V, Brooks G, Liffman K (2011) The effect of the regular solution model in the condensation of protoplanetary dust. MNRAS 414:2386–2405ADSCrossRefGoogle Scholar
  143. Pinhas A, Madhusudhan N, Clarke C (2016) Efficiency of planetesimal ablation in giant planetary envelopes. MNRAS 463:4516–4532ADSCrossRefGoogle Scholar
  144. Pollack JB, Hubickyj O, Bodenheimer P et al (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124:62–85ADSCrossRefGoogle Scholar
  145. Pontoppidan KM, Salyk C, Bergin EA et al (2014) Volatiles in protoplanetary disks. In: Beuther B (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 363–385Google Scholar
  146. Pudritz RE, Norman CA (1986) Bipolar hydromagnetic winds from disks around protostellar objects. ApJ 301:571–586ADSCrossRefGoogle Scholar
  147. Pudritz RE, Ouyed R, Fendt C, Brandenburg A (2007) Disk winds, jets, and outflows: theoretical and computational foundations. In: Beuther B (ed) Protostars and Planets V. University of Arizona Press, Tucson, pp 277–294Google Scholar
  148. Qi C, Öberg KI, Wilner DJ et al (2013) Imaging of the CO snow line in a solar nebula analog. Science 341:630–632ADSCrossRefGoogle Scholar
  149. Queloz D, Mayor M, Weber L et al (2000) The CORALIE survey for southern extra-solar planets. I. A planet orbiting the star Gliese 86. A&A 354:99–102ADSGoogle Scholar
  150. Raettig N, Klahr H, Lyra W (2015) Particle trapping and streaming instability in vortices in protoplanetary disks. ApJ 804:35ADSCrossRefGoogle Scholar
  151. Ray T, Dougados C, Bacciotti F, Eislöffel J, Chrysostomou A (2007) Toward resolving the outflow engine: an observational perspective. In: Beuther B (ed) Protostars and Planets V. University of Arizona Press, Tucson, pp 231–244Google Scholar
  152. Raymond SN, Kokubo E, Morbidelli A, Morishima R Walsh KJ (2014) Terrestrial Planet Formation at Home and Abroad. In: Beuther B (ed) Protostars and Planets VI. University of Arizona Press, Tucson, pp 595–618Google Scholar
  153. Rivilla VM, Beltrán MT, Cesaroni R et al (2017) Formation of ethylene glycol and other complex organic molecules in star-forming regions. A&A 598:A59ADSCrossRefGoogle Scholar
  154. Rogers LA (2014) Glimpsing the compositions of sub-neptune-size exoplanets. In: Booth M, Matthews BC, Graham JR (eds) Exploring the formation and evolution of planetary systems. IAU symposium, vol 299, pp 247–251. CrossRefGoogle Scholar
  155. Ros K, Johansen A (2013) Ice condensation as a planet formation mechanism. A&A 552:A137ADSCrossRefGoogle Scholar
  156. Ruden SP (2004) Evolution of photoevaporating protoplanetary disks. ApJ 605:880–891ADSCrossRefGoogle Scholar
  157. Salmeron R, Wardle M (2003) Magnetorotational instability in stratified, weakly ionized accretion discs. MNRAS 345:992–1008ADSCrossRefGoogle Scholar
  158. Salyk C, Pontoppidan KM, Blake GA et al (2008) H2O and OH gas in the terrestrial planet-forming zones of protoplanetary disks. ApJ 676:L49ADSCrossRefGoogle Scholar
  159. Schäfer U, Yang CC, Johansen A (2017) Initial mass function of planetesimals formed by the streaming instability. A&A 597:A69ADSCrossRefGoogle Scholar
  160. Seifried D, Banerjee R, Pudritz RE, Klessen RS (2015) Accretion and magnetic field morphology around Class 0 stage protostellar discs. MNRAS 446:2776–2788ADSCrossRefGoogle Scholar
  161. Shakura NI, Sunyaev RA (1973) Black holes in binary systems. Observational appearance. A&A 24:337–355Google Scholar
  162. Showman AP, Guillot T (2002) Atmospheric circulation and tides of “51 Pegasus b-like” planets. A&A 385:166–180ADSCrossRefGoogle Scholar
  163. Simon JB, Armitage PJ, Li R, Youdin AN (2016) The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. ApJ 822:55ADSCrossRefGoogle Scholar
  164. Spezzano S, Caselli P, Bizzocchi L, Giuliano BM, Lattanzi V (2017) The observed chemical structure of L1544. A&A 606:A82ADSCrossRefGoogle Scholar
  165. Stammler SM, Birnstiel T, Panić O, Dullemond CP, Dominik C (2017) Redistribution of CO at the location of the CO ice line in evolving gas and dust disks. A&A 600:A140ADSCrossRefGoogle Scholar
  166. Stevenson DJ (1985) Cosmochemistry and structure of the giant planets and their satellites. Icarus 62:4–15ADSCrossRefGoogle Scholar
  167. Stevenson DJ, Lunine JI (1988) Rapid formation of Jupiter by diffuse redistribution of water vapor in the solar nebula. Icarus 75:146–155ADSCrossRefGoogle Scholar
  168. Tamayo D, Triaud AHMJ, Menou K, Rein H (2015) Dynamical stability of imaged planetary systems in formation: application to HL Tau. ApJ 805:100ADSCrossRefGoogle Scholar
  169. Terquem C, Papaloizou JCB (1996) On the stability of an accretion disc containing a toroidal magnetic field. MNRAS 279:767–784ADSCrossRefGoogle Scholar
  170. Testi L, Birnstiel T, Ricci L et al (2014) Dust evolution in protoplanetary disks. In: Beuther B (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 339–361Google Scholar
  171. Thiabaud A, Marboeuf U, Alibert Y, Leya I, Mezger K (2015) Gas composition of the main volatile elements in protoplanetary discs and its implication for planet formation. A&A 574:A138ADSCrossRefGoogle Scholar
  172. Tobin JJ, Looney LW, Wilner DJ et al (2015) A sub-arcsecond survey toward Class 0 protostars in perseus: searching for signatures of protostellar disks. ApJ 805:125ADSCrossRefGoogle Scholar
  173. Toppani A, Libourel G, Robert F, Ghanbaja J (2006) Laboratory condensation of refractory dust in protosolar and circumstellar conditions. Geochim Cosmochim Acta 70:5035–5060ADSCrossRefGoogle Scholar
  174. Turner NJ, Fromang S, Gammie C et al (2014) Transport and accretion in planet-forming disks. In: Beuther B (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 411–432Google Scholar
  175. Udry S, Santos NC (2007) Statistical properties of exoplanets. ARA&A 45:397–439ADSCrossRefGoogle Scholar
  176. Umebayashi T, Nakano T (2009) Effects of radionuclides on the ionization state of protoplanetary disks and dense cloud cores. ApJ 690:69–81ADSCrossRefGoogle Scholar
  177. Valencia D, Sasselov DD, O’Connell RJ (2007) Detailed models of super-earths: how well can we infer bulk properties? ApJ 665:1413–1420ADSCrossRefGoogle Scholar
  178. Vasyunin AI, Caselli P, Dulieu F, Jiménez-Serra I (2017) Formation of complex molecules in prestellar cores: a multilayer approach. ApJ 842:33ADSCrossRefGoogle Scholar
  179. Wahl SM, Hubbard WB, Militzer B et al (2017) Comparing Jupiter interior structure models to Juno gravity measurements and the role of a dilute core. Geophys Res Lett 44:4649–4659ADSCrossRefGoogle Scholar
  180. Walsh C, Millar TJ, Nomura H et al (2014) Complex organic molecules in protoplanetary disks. A&A 563:A33ADSCrossRefGoogle Scholar
  181. Walsh C, Nomura H, van Dishoeck E (2015) The molecular composition of the planet-forming regions of protoplanetary disks across the luminosity regime. A&A 582:A88ADSCrossRefGoogle Scholar
  182. Wang J, Fischer DA (2015) Revealing a universal planet-metallicity correlation for planets of different sizes around solar-type stars. AJ 149:14ADSCrossRefGoogle Scholar
  183. Ward WR (1986) Density waves in the solar nebula – differential lindblad torque. Icarus 67: 164–180ADSCrossRefGoogle Scholar
  184. Ward WR (1997) Protoplanet migration by nebula tides. Icarus 126:261–281ADSCrossRefGoogle Scholar
  185. Weidenschilling SJ (1977) Aerodynamics of solid bodies in the solar nebula. MNRAS 180:57–70ADSCrossRefGoogle Scholar
  186. Weiss LM, Marcy GW, Rowe JF et al (2013) The mass of KOI-94d and a relation for planet radius, mass, and incident flux. ApJ 768:14ADSCrossRefGoogle Scholar
  187. Xu R, Bai XN, Öberg K (2017) Turbulent-diffusion mediated CO depletion in weakly turbulent protoplanetary disks. ApJ 835:162ADSCrossRefGoogle Scholar
  188. Yan H, Lazarian A (2002) Scattering of cosmic rays by magnetohydrodynamic interstellar turbulence. Phys Rev Lett 89:281102ADSCrossRefGoogle Scholar
  189. Youdin AN, Goodman J (2005) Streaming instabilities in protoplanetary disks. ApJ 620:459–469ADSCrossRefGoogle Scholar
  190. Youdin AN, Shu FH (2002) Planetesimal formation by gravitational instability. ApJ 580:494–505ADSCrossRefGoogle Scholar
  191. Yu L, Donati JF, Hébrard EM et al (2017) A hot Jupiter around the very active weak-line T Tauri star TAP 26. MNRAS 467:1342–1359ADSGoogle Scholar
  192. Yu M, Willacy K, Dodson-Robinson SE, Turner NJ, Evans NJ II (2016) Probing planet forming zones with rare CO isotopologues. ApJ 822:53ADSCrossRefGoogle Scholar
  193. Zapolsky HS, Salpeter EE (1969) The mass-radius relation for cold spheres of low mass. ApJ 158:809ADSCrossRefGoogle Scholar
  194. Zhang K, Blake GA, Bergin EA (2015) Evidence of fast pebble growth near condensation fronts in the HL Tau protoplanetary disk. ApJ 806:L7ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ralph E. Pudritz
    • 1
    • 2
  • Alex J. Cridland
    • 3
  • Matthew Alessi
    • 1
  1. 1.Department of Physics and AstronomyMcMaster UniversityHamiltonCanada
  2. 2.Origins InstituteMcMaster UniversityHamiltonCanada
  3. 3.Leiden ObservatoryLeiden University2300 RA LeidenThe Netherlands

Section editors and affiliations

  • Ralph Pudritz
    • 1
  1. 1.Origins InstituteMcMaster UniversityHamiltonCanada

Personalised recommendations