Skip to main content

Dust Evolution in Protoplanetary Disks

  • Living reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

The canonical model for the formation of terrestrial planets and giant planet cores implicitly relies on an early and efficient phase of planetesimal growth in a gas-rich circumstellar disk. But, as theorists have known for decades now, there are some formidable obstacles to meeting that requirement. Many of these problems, and potentially their solutions, are associated with the growth and migration of “pebbles” (∼mm/cm-sized solids) in the first few million years of a disk’s lifetime. That is especially fortuitous, since the thermal continuum emission from these particles in nearby disks can be readily detected and resolved with long-baseline radio interferometers. This chapter describes what is being learned about the early evolution of solids by comparing such data with sophisticated simulations. Specifically, the focus will be on the observable signatures of particle growth and migration and the mounting evidence that small-scale substructures in the (gas) disk play fundamental – and perhaps mandatory – roles in the planet formation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adachi I, Hayashi C, Nakazawa K (1976) The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. Prog Theor Phys 56:1756–1771

    Article  ADS  Google Scholar 

  • ALMA Partnership, Brogan CL, Pérez LM et al (2015) The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region. ApJ 808:L3

    Google Scholar 

  • Andrews SM (2015) Observations of solids in protoplanetary disks. PASP 127:961–993

    Google Scholar 

  • Andrews SM, Wilner DJ, Hughes AM, Qi C, Dullemond CP (2009) Protoplanetary disk structures in ophiuchus. ApJ 700:1502–1523

    Article  ADS  Google Scholar 

  • Andrews SM, Rosenfeld KA, Wilner DJ, Bremer M (2011a) A closer look at the LkCa 15 protoplanetary disk. ApJ 742:L5

    Article  ADS  Google Scholar 

  • Andrews SM, Wilner DJ, Espaillat C et al (2011b) Resolved images of large cavities in protoplanetary transition disks. ApJ 732:42

    Google Scholar 

  • Andrews SM, Wilner DJ, Hughes AM et al (2012) The TW Hya disk at 870 μm: comparison of CO and dust radial structures. ApJ 744:162

    Google Scholar 

  • Andrews SM, Wilner DJ, Zhu Z et al (2016) Ringed substructure and a gap at 1 au in the nearest protoplanetary disk. ApJ 820:L40

    Google Scholar 

  • Beckwith SVW, Sargent AI, Chini RS, Guesten R (1990) A survey for circumstellar disks around young stellar objects. AJ 99:924–945

    Article  ADS  Google Scholar 

  • Birnstiel T, Andrews SM (2014) On the outer edges of protoplanetary dust disks. ApJ 780:153

    Article  ADS  Google Scholar 

  • Birnstiel T, Dullemond CP, Brauer F (2009) Dust retention in protoplanetary disks. A&A 503: L5–L8

    Google Scholar 

  • Birnstiel T, Dullemond CP, Brauer F (2010a) Gas- and dust evolution in protoplanetary disks. A&A 513:A79

    Article  ADS  Google Scholar 

  • Birnstiel T, Ricci L, Trotta F et al (2010b) Testing the theory of grain growth and fragmentation by millimeter observations of protoplanetary disks. A&A 516:L14

    Google Scholar 

  • Birnstiel T, Klahr H, Ercolano B (2012) A simple model for the evolution of the dust population in protoplanetary disks. A&A 539:A148

    Google Scholar 

  • Birnstiel T, Dullemond CP, Pinilla P (2013) Lopsided dust rings in transition disks. A&A 550:L8

    Article  ADS  Google Scholar 

  • Birnstiel T, Andrews SM, Pinilla P, Kama M (2015) Dust evolution can produce scattered light gaps in protoplanetary disks. ApJ 813:L14

    Google Scholar 

  • Birnstiel T, Fang M, Johansen A (2016) Dust evolution and the formation of planetesimals. Space Sci Rev 205:41–75

    Google Scholar 

  • Blum J, Wurm G (2008) The growth mechanisms of macroscopic bodies in protoplanetary disks. ARA&A 46:21–56

    Google Scholar 

  • Brauer F, Dullemond CP, Johansen A et al (2007) Survival of the mm-cm size grain population observed in protoplanetary disks. A&A 469:1169–1182

    Article  ADS  Google Scholar 

  • Brauer F, Dullemond CP, Henning T (2008) Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks. A&A 480:859–877

    Google Scholar 

  • Brown JM, Blake GA, Dullemond CP et al (2007) Cold disks: spitzer spectroscopy of disks around young stars with large gaps. ApJ 664:L107–L110

    Google Scholar 

  • Brown JM, Blake GA, Qi C, Dullemond CP, Wilner DJ (2008) LkHα 330: evidence for dust clearing through resolved submillimeter imaging. ApJ 675:L109–L112

    Article  ADS  Google Scholar 

  • Casassus S, van der Plas G, Sebastian Perez M et al (2013) Flows of gas through a protoplanetary gap. Nature 493:191–194

    Article  ADS  Google Scholar 

  • Chambers JE (2014) Giant planet formation with pebble accretion. Icarus 233:83–100

    Google Scholar 

  • Chiang E, Youdin AN (2010) Forming planetesimals in solar and extrasolar nebulae. Annu Rev Earth Planet Sci 38:493–522

    Google Scholar 

  • Cieza LA, Casassus S, Tobin J et al (2016) Imaging the water snow-line during a protostellar outburst. Nature 535:258–261

    Google Scholar 

  • D’Alessio P, Calvet N, Hartmann L, Franco-Hernández R, Servín H (2006) Effects of dust growth and settling in T Tauri disks. ApJ 638:314–335

    Article  ADS  Google Scholar 

  • de Gregorio-Monsalvo I, Ménard F, Dent W et al (2013) Unveiling the gas-and-dust disk structure in HD 163296 using ALMA observations. A&A 557:A133

    Google Scholar 

  • de Juan Ovelar M, Min M, Dominik C et al (2013) Imaging diagnostics for transitional discs. A&A 560:A111

    Article  ADS  Google Scholar 

  • Dong R, Rafikov R, Zhu Z et al (2012) The missing cavities in the SEEDS polarized scattered light images of transitional protoplanetary disks: a generic disk model. ApJ 750:161

    Google Scholar 

  • Draine BT (2006) On the submillimeter opacity of protoplanetary disks. ApJ 636:1114–1120

    Google Scholar 

  • Espaillat C, Muzerolle J, Najita J et al (2014) An observational perspective of transitional disks. In: Beuther H et al (eds) Protostars and planets VI. Lunar and Planetary Institute, Houston, pp 497–520

    Google Scholar 

  • Garaud P, Meru F, Galvagni M, Olczak C (2013) From dust to planetesimals: an improved model for collisional growth in protoplanetary disks. ApJ 764:146

    Article  ADS  Google Scholar 

  • Gonzalez JF, Laibe G, Maddison ST, Pinte C, Ménard F (2015) The accumulation and trapping of grains at planet gaps: effects of grain growth and fragmentation. Planet Space Sci 116:48–56

    Google Scholar 

  • Grady CA, Muto T, Hashimoto J et al (2013) Spiral arms in the asymmetrically illuminated disk of MWC 758 and constraints on giant planets. ApJ 762:48

    Google Scholar 

  • Guidi G, Tazzari M, Testi L et al (2016) Dust properties across the CO snowline in the HD 163296 disk from ALMA and VLA observations. A&A 588:A112

    Google Scholar 

  • Guilloteau S, Dutrey A, Piétu V, Boehler Y (2011) A dual-frequency sub-arcsecond study of proto-planetary disks at mm wavelengths: first evidence for radial variations of the dust properties. A&A 529:A105

    Article  ADS  Google Scholar 

  • Güttler C, Blum J, Zsom A, Ormel CW, Dullemond CP (2010) The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals?. I. Mapping the zoo of laboratory collision experiments. A&A 513:A56

    Article  ADS  Google Scholar 

  • Huang J, Öberg KI, Andrews SM (2016) Evidence for a CO desorption front in the outer AS 209 disk. ApJ 823:L18

    Article  ADS  Google Scholar 

  • Hubickyj O, Bodenheimer P, Lissauer JJ (2005) Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core. Icarus 179:415–431

    Google Scholar 

  • Hughes AM, Andrews SM, Espaillat C et al (2009) A spatially resolved inner hole in the disk around GM aurigae. ApJ 698:131–142

    Article  ADS  Google Scholar 

  • Isella A, Carpenter JM, Sargent AI (2010) Investigating planet formation in circumstellar disks: CARMA observations of Ry Tau and Dg Tau. ApJ 714:1746–1761

    Google Scholar 

  • Isella A, Pérez LM, Carpenter JM et al (2013) An Azimuthal asymmetry in the LkHα 330 disk. ApJ 775:30

    Article  ADS  Google Scholar 

  • Isella A, Guidi G, Testi L et al (2016) Ringed structures of the HD 163296 protoplanetary disk revealed by ALMA. Phys Rev Lett 117:251101

    Google Scholar 

  • Johansen A, Klahr H, Henning T (2006) Gravoturbulent formation of planetesimals. ApJ 636:1121–1134

    Google Scholar 

  • Johansen A, Oishi JS, Mac Low MM et al (2007) Rapid planetesimal formation in turbulent circumstellar disks. Nature 448:1022–1025

    Article  ADS  Google Scholar 

  • Johansen A, Youdin A, Klahr H (2009) Zonal flows and long-lived axisymmetric pressure bumps in magnetorotational turbulence. ApJ 697:1269–1289

    Article  ADS  Google Scholar 

  • Johansen A, Blum J, Tanaka H et al (2014) The multifaceted planetesimal formation process. In: Beuther H et al (eds) Protostars and planets VI. Lunar and Planetary Institute, Houston, pp 547–570

    Google Scholar 

  • Kataoka A, Okuzumi S, Tanaka H, Nomura H (2014) Opacity of fluffy dust aggregates. A&A 568:A42

    Article  ADS  Google Scholar 

  • Krijt S, Ormel CW, Dominik C, Tielens AGGM (2015) Erosion and the limits to planetesimal growth. A&A 574:A83

    Article  ADS  Google Scholar 

  • Kusaka T, Nakano T, Hayashi C (1970) Growth of solid particles in the primordial solar nebula. Prog Theor Phys 44:1580–1595

    Article  ADS  Google Scholar 

  • Laibe G, Gonzalez JF, Maddison ST (2012) Revisiting the “radial-drift barrier” of planet formation and its relevance in observed protoplanetary discs. A&A 537:A61

    Article  Google Scholar 

  • Lambrechts M, Johansen A (2012) Rapid growth of gas-giant cores by pebble accretion. A&A 544:A32

    Google Scholar 

  • Lambrechts M, Johansen A (2014) Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. A&A 572:A107

    Article  ADS  Google Scholar 

  • Levison HF, Kretke KA, Duncan MJ (2015) Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524:322–324

    Google Scholar 

  • Loomis LW, Mundy LG, Welch WJ (2017) Unveiling the circumstellar envelope and disk: a subarcsecond survey of circumstellar structures. ApJ 529:477–498

    Google Scholar 

  • Menu J, van Boekel R, Henning T et al (2014) On the structure of the transition disk around TW Hydrae. A&A 564:A93

    Google Scholar 

  • Miyake K, Nakagawa Y (1993) Effects of particle size distribution on opacity curves of protoplanetary disks around T Tauri stars. Icarus 106:20

    Google Scholar 

  • Muto T, Grady CA, Hashimoto J et al (2012) Discovery of small-scale spiral structures in the disk of SAO 206462 (HD 135344B): implications for the physical state of the disk from spiral density wave theory. ApJ 748:L22

    Google Scholar 

  • Nakagawa Y, Sekiya M, Hayashi C (1986) Settling and growth of dust particles in a laminar phase of a low-mass solar nebula. Icarus 67:375–390

    Article  ADS  Google Scholar 

  • Okuzumi S (2009) Electric charging of dust aggregates and its effect on dust coagulation in protoplanetary disks. ApJ 698:1122

    Google Scholar 

  • Okuzumi S, Tanaka H, Kobayashi H, Wada K (2012) Rapid coagulation of porous dust aggregates outside the snow line: a pathway to successful icy planetesimal formation. ApJ 752:106

    Google Scholar 

  • Paardekooper SJ, Mellema G (2004) Planets opening dust gaps in gas disks. A&A 425:L9–L12

    Article  ADS  Google Scholar 

  • Panić O, Hogerheijde MR, Wilner D, Qi C (2009) A break in the gas and dust surface density of the disc around the T Tauri star IM Lupi. A&A 501:269–278

    Article  ADS  Google Scholar 

  • Pérez LM, Carpenter JM, Chandler CJ et al (2012) Constraints on the radial variation of grain growth in the AS 209 circumstellar disk. ApJ 760:L17

    Article  ADS  Google Scholar 

  • Pérez LM, Chandler CJ, Isella A et al (2015) Grain growth in the circumstellar disks of the young stars CY Tau and DoAr 25. ApJ 813:41

    Google Scholar 

  • Pérez LM, Carpenter JM, Andrews SM et al (2016) Spiral density waves in a young protoplanetary disk. Science 353:1519–1521

    Article  ADS  MathSciNet  Google Scholar 

  • Pinilla P, Benisty M, Birnstiel T (2012a) Ring shaped dust accumulation in transition disks. A&A 545:A81

    Article  ADS  Google Scholar 

  • Pinilla P, Birnstiel T, Ricci L et al (2012b) Trapping dust particles in the outer regions of protoplanetary disks. A&A 538:A114

    Google Scholar 

  • Pinilla P, Benisty M, Birnstiel T et al (2014) Millimetre spectral indices of transition disks and their relation to the cavity radius. A&A 564:A51

    Google Scholar 

  • Pinilla P, de Boer J, Benisty M et al (2015a) Variability and dust filtration in the transition disk J160421.7-213028 observed in optical scattered light. A&A 584:L4

    Google Scholar 

  • Pinilla P, van der Marel N, Pérez LM et al (2015b) Testing particle trapping in transition disks with ALMA. A&A 584:A16

    Google Scholar 

  • Pohl A, Kataoka A, Pinilla P et al (2016) Investigating dust trapping in transition disks with millimeter-wave polarization. A&A 593:A12

    Google Scholar 

  • Pollack JB, Hubickyj O, Bodenheimer P et al (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124:62–85

    Article  ADS  Google Scholar 

  • Rice WKM, Wood K, Armitage PJ, Whitney BA, Bjorkman JE (2003) Constraints on a planetary origin for the gap in the protoplanetary disc of GM Aurigae. MNRAS 342:79–85

    Google Scholar 

  • Rosenfeld KA, Qi C, Andrews SM et al (2012) Kinematics of the CO gas in the inner regions of the TW Hya disk. ApJ 757:129

    Article  ADS  Google Scholar 

  • Rosenfeld KA, Andrews SM, Hughes AM, Wilner DJ, Qi C (2013) A spatially resolved vertical temperature gradient in the HD 163296 disk. ApJ 774:16

    Article  ADS  Google Scholar 

  • Takeuchi T, Lin DNC (2002) Radial flow of dust particles in accretion disks. ApJ 581:1344–1355

    Article  ADS  Google Scholar 

  • Takeuchi T, Lin DNC (2005) Attenuation of millimeter emission from circumstellar disks induced by the rapid dust accretion. ApJ 623:482–492

    Google Scholar 

  • Tazzari M, Testi L, Ercolano B et al (2016) Multiwavelength analysis for interferometric (sub-) mm observations of protoplanetary disks. Radial constraints on the dust properties and the disk structure. A&A 588:A53

    Google Scholar 

  • Testi L, Birnstiel T, Ricci L et al (2014) Dust evolution in protoplanetary disks. In: Beuther H et al (eds) Protostars and planets VI. Lunar and Planetary Institute, Houston, pp 339–361

    Google Scholar 

  • Tripathi A, Andrews SM, Birnstiel T, Wilner DJ (2017) A millimeter continuum size-luminosity relationship for protoplanetary disks. ApJ 845:44

    Article  ADS  Google Scholar 

  • Tripathi A, Andrews SM, Birnstiel T et al (2018, under review) The millimeter continuum size–frequency relationship in the UZ Tau E disk. ApJ

    Google Scholar 

  • Trotta F, Testi L, Natta A, Isella A, Ricci L (2013) Constraints on the radial distribution of the dust properties in the CQ Tauri protoplanetary disk. A&A 558:A64

    Article  ADS  Google Scholar 

  • van der Marel N, van Dishoeck EF, Bruderer S et al (2013) A major asymmetric dust trap in a transition disk. Science 340:1199–1202

    Article  ADS  Google Scholar 

  • van der Marel N, van Dishoeck EF, Bruderer S, Pérez L, Isella A (2015) Gas density drops inside dust cavities of transitional disks around young stars observed with ALMA. A&A 579:A106

    Article  ADS  Google Scholar 

  • Walsh C, Juhász A, Pinilla P et al (2014) ALMA hints at the presence of two companions in the disk around HD 100546. ApJ 791:L6

    Article  ADS  Google Scholar 

  • Weidenschilling SJ (1977) Aerodynamics of solid bodies in the solar nebula. MNRAS 180:57–70

    Article  ADS  Google Scholar 

  • Weidenschilling SJ (2003) Radial drift of particles in the solar nebula: implications for planetesimal formation. Icarus 165:438–442

    Article  ADS  Google Scholar 

  • Whipple FL (1972) On certain aerodynamic processes for asteroids and comets. In: Elvius A (ed) From plasma to planet. Almqvist & Wiksell, Stockholm, p 211

    Google Scholar 

  • Windmark F, Birnstiel T, Güttler C et al (2012a) Planetesimal formation by sweep-up: how the bouncing barrier can be beneficial to growth. A&A 540:A73

    Article  ADS  Google Scholar 

  • Windmark F, Birnstiel T, Ormel CW, Dullemond CP (2012b) Breaking through: the effects of a velocity distribution on barriers to dust growth. A&A 544:L16

    Article  ADS  Google Scholar 

  • Youdin AN, Shu FH (2002) Planetesimal formation by gravitational instability. ApJ 580:494–505

    Article  ADS  Google Scholar 

  • Youdin AN, Goodman J (2005) Streaming instabilities in protoplanetary disks. ApJ 620:459–469

    Article  ADS  Google Scholar 

  • Zhang K, Bergin EA, Blake GA et al (2016) On the commonality of 10–30 AU sized axisymmetric dust structures in protoplanetary disks. ApJ 818:L16

    Article  ADS  Google Scholar 

  • Zsom A, Ormel CW, Güttler C, Blum J, Dullemond CP (2010) The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. A&A 513:A57

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean M. Andrews .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Andrews, S.M., Birnstiel, T. (2018). Dust Evolution in Protoplanetary Disks. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_136-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_136-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics