Advertisement

Tools for Transit and Radial Velocity Modelling and Analysis

  • Hans J. Deeg
Living reference work entry

Abstract

An overview over analysis or modelling tools related to the radial velocity and transit methods for exoplanet detection and characterization is given, with over 40 software tools presented. Tools that cover related subjects, such as physical exoplanet modelling, stellar activity, limb darkening, or stellar parameter estimates, are included as well. All presented tools have been verified to be publicly available, although inoperative software repositories were not uncommon. This issue needs to be addressed, with some of the existing solutions for long-term storage to be considered.

Notes

Acknowledgements

This work has been supported by the Spanish Spanish Secretary of State for R&D&i (MINECO) under the grant ESP2015-65712-C5-4-R. The author thanks everyone who responded to a call to suggest tools for inclusion. Without this feedback, this hopefully rather complete overview would have been impossible!

References

  1. Agol E, Deck K (2016a) Transit timing to first order in eccentricity. ApJ 818:177ADSCrossRefGoogle Scholar
  2. Agol E, Deck K (2016b) TTVFaster: first order eccentricity transit timing variations (TTVs). Astrophysics Source Code Library, ascl:1604.012Google Scholar
  3. Almenara JM, Díaz RF, Mardling R et al (2015) Absolute masses and radii determination in multiplanetary systems without stellar models. MNRAS 453:2644–2652ADSCrossRefGoogle Scholar
  4. Andreasen DT, Sousa SG, Tsantaki M et al (2017) SWEET-Cat update and FASMA. A new minimization procedure for stellar parameters using high-quality spectra. A&A 600:A69Google Scholar
  5. Baluev RV (2013a) PlanetPack: a radial-velocity time-series analysis tool facilitating exoplanets detection, characterization, and dynamical simulations. Astron Comput 2:18–26ADSCrossRefGoogle Scholar
  6. Baluev RV (2013b) PlanetPack: radial-velocity time-series analysis tool. Astrophysics Source Code Library, ascl:1311.004Google Scholar
  7. Baluev RV (2015) PlanetPack3: a software tool for exoplanets characterization from radial velocity and transit data. IAU Gen Assem 22:2249592ADSGoogle Scholar
  8. Barros SCC, Almenara JM, Demangeon O et al (2015) Photodynamical mass determination of the multiplanetary system K2-19. MNRAS 454:4267–4276ADSCrossRefGoogle Scholar
  9. Béky B (2014) SPOTROD: semi-analytic model for transits of spotted stars. Astrophysics Source Code Library, ascl:1411.015Google Scholar
  10. Béky B, Kipping DM, Holman MJ (2014) SPOTROD: a semi-analytic model for transits of spotted stars. MNRAS 442:3686–3699ADSCrossRefGoogle Scholar
  11. Blecic J (2016) Observations, thermochemical calculations, and modeling of exoplanetary atmospheres. PhD Thesis, University of Central Florida. ArXiv e-prints, arXiv:160402692Google Scholar
  12. Blecic J, Harrington J, Bowman MO (2015) TEA: thermal equilibrium abundances. Astrophysics Source Code Library, ascl:1505.031Google Scholar
  13. Blecic J, Harrington J, Bowman MO (2016) TEA: a code calculating thermochemical equilibrium abundances. ApJS 225:4ADSCrossRefGoogle Scholar
  14. Boisse I, Bonfils X, Santos NC (2012) SOAP. A tool for the fast computation of photometry and radial velocity induced by stellar spots. A&A 545:A109Google Scholar
  15. Borkovits T, Rappaport S, Hajdu T, Sztakovics J (2015) Eclipse timing variation analyses of eccentric binaries with close tertiaries in the Kepler field. MNRAS 448:946–993ADSCrossRefGoogle Scholar
  16. Borsato L (2016) TRADES: TRAnsits and dynamics of exoplanetary systems. Astrophysics Source Code Library, ascl:1601.001Google Scholar
  17. Borsato L, Marzari F, Nascimbeni V et al (2014) TRADES: a new software to derive orbital parameters from observed transit times and radial velocities. Revisiting Kepler-11 and Kepler-9. A&A 571:A38Google Scholar
  18. Bradstreet DH (2005) Fundamentals of solving eclipsing binary light curves using binary maker 3. Soc Astron Sci Annu Symp 24:23Google Scholar
  19. Brakensiek J, Ragozzine D (2016a) CORBITS: efficient geometric probabilities of multi-transiting exoplanetary systems. Astrophysics Source Code Library, ascl:1603.002Google Scholar
  20. Brakensiek J, Ragozzine D (2016b) Efficient geometric probabilities of multi-transiting exoplanetary systems from CORBITS. ApJ 821:47ADSCrossRefGoogle Scholar
  21. Bruntt H (2009) Accurate fundamental parameters of CoRoT asteroseismic targets. The solar-like stars HD 49933, HD 175726, HD 181420, and HD 181906. A&A 506:235–244ADSCrossRefGoogle Scholar
  22. Bruntt H, Catala C, Garrido R et al (2002) Abundance analysis of targets for the COROT/MONS asteroseismology missions. I. Semi-automatic abundance analysis of the Gamma Dor star HD 49434. A&A 389:345–354ADSCrossRefGoogle Scholar
  23. Bruntt H, Deleuil M, Fridlund M et al (2010) Improved stellar parameters of CoRoT-7. A star hosting two super Earths. A&A 519:A51Google Scholar
  24. Carter JA, Fabrycky DC, Ragozzine D et al (2011) KOI-126: a triply eclipsing hierarchical triple with two low-mass stars. Science 331:562ADSCrossRefGoogle Scholar
  25. Cubillos PE (2016) Characterizing exoplanet atmospheres: from light-curve observations to radiative-transfer modeling, PhD Thesis, University of Central Florida. ArXiv e-prints, arXiv:160401320Google Scholar
  26. Cubillos P, Blecic J, Harrington J et al (2016) BART: bayesian atmospheric radiative transfer fitting code. Astrophysics Source Code Library, ascl:1608.004Google Scholar
  27. Cubillos P, Harrington J, Loredo TJ et al (2017) On correlated-noise analyses applied to exoplanet light curves. AJ 153:3ADSCrossRefGoogle Scholar
  28. Czekala I, Mandel KS, Andrews SM et al (2017) Disentangling time series spectra with gaussian processes: applications to radial velocity analysis. ApJ 840: 49ADSCrossRefGoogle Scholar
  29. Deck K, Agol E, Holman M, Nesvorny D (2014a) TTVFast: transit timing inversion. Astrophysics Source Code Library, ascl:1404.015Google Scholar
  30. Deck KM, Agol E, Holman MJ, Nesvorný D (2014b) TTVFast: an efficient and accurate code for transit timing inversion problems. ApJ 787:132ADSCrossRefGoogle Scholar
  31. Deeg H (2009) UTM, a universal simulator for lightcurves of transiting systems. In: Pont F, Sasselov D, Holman MJ (eds) Transiting planets, IAU symposium, vol 253, pp 388–391.  doi:10.1017/S1743921308026720 Google Scholar
  32. Deeg HJ (2014) UTM: universal transit modeller. Astrophysics Source Code Library, ascl:1412.003Google Scholar
  33. Díaz RF, Almenara JM, Santerne A et al (2014) PASTIS: bayesian extrasolar planet validation – I. General framework, models, and performance. MNRAS 441:983–1004ADSCrossRefGoogle Scholar
  34. Dindar S, Ford EB, Juric M et al (2012) Swarm-NG: parallel n-body integrations. Astrophysics Source Code Library, ascl:1208.012Google Scholar
  35. Dindar S, Ford EB, Juric M et al (2013) Swarm-NG: A CUDA library for Parallel n-body Integrations with focus on simulations of planetary systems. New Astron 23:6–18ADSCrossRefGoogle Scholar
  36. Dumusque X, Boisse I, Santos NC (2014) SOAP 2.0: a tool to estimate the photometric and radial velocity variations induced by stellar spots and plages. ApJ 796:132Google Scholar
  37. Eastman J, Siverd R, Gaudi BS (2010) Achieving better than 1 minute accuracy in the heliocentric and barycentric julian dates. PASP 122:935ADSCrossRefGoogle Scholar
  38. Eastman J, Gaudi BS, Agol E (2012) EXOFAST: fast transit and/or RV fitter for single exoplanet. Astrophysics Source Code Library, ascl:1207.001Google Scholar
  39. Eastman J, Gaudi BS, Agol E (2013) EXOFAST: a fast exoplanetary fitting suite in IDL. PASP 125:83ADSCrossRefGoogle Scholar
  40. Espinoza N, Jordán A (2015) Limb darkening and exoplanets: testing stellar model atmospheres and identifying biases in transit parameters. MNRAS 450:1879–1899ADSCrossRefGoogle Scholar
  41. Espinoza N, Jordán A (2016) Limb darkening and exoplanets – II. Choosing the best law for optimal retrieval of transit parameters. MNRAS 457:3573–3581Google Scholar
  42. Espinoza N, Brahm R, Jordán A et al (2016) Discovery and validation of a high-density sub-Neptune from the K2 mission. ApJ 830:43ADSCrossRefGoogle Scholar
  43. Foreman-Mackey D, Conley A, Meierjurgen Farr W et al (2013) emcee: the MCMC hammer. Astrophysics Source Code Library, ascl:1303.002Google Scholar
  44. Gazak JZ, Johnson JA, Tonry J et al (2011) Transit analysis package (TAP and autoKep): IDL graphical user interfaces for extrasolar planet transit photometry. Astrophysics Source Code Library, ascl:1106.014Google Scholar
  45. Gazak JZ, Johnson JA, Tonry J et al (2012) Transit analysis package: an IDL graphical user interface for exoplanet transit photometry. Adv Astron 2012:697967ADSCrossRefGoogle Scholar
  46. Giménez A (2006) Equations for the analysis of the light curves of extra-solar planetary transits. A&A 450:1231–1237ADSCrossRefGoogle Scholar
  47. Hadden S, Lithwick Y (2016) Numerical and analytical modeling of transit timing variations. ApJ 828:44ADSCrossRefGoogle Scholar
  48. Harrington J (2017) Reproducible research. https://planets.ucf.edu/resources/reproducible-research/
  49. Iglesias-Marzoa R, López-Morales M, Jesús Arévalo Morales M (2015a) rvfit: radial velocity curves fitting for binary stars or exoplanets. Astrophysics Source Code Library, ascl:1505.020Google Scholar
  50. Iglesias-Marzoa R, López-Morales M, Jesús Arévalo Morales M (2015b) The rvfit code: a detailed adaptive simulated annealing code for fitting binaries and exoplanets radial velocities. PASP 127:567ADSCrossRefGoogle Scholar
  51. Jackson BK, Lewis NK, Barnes JW et al (2012) The EVIL-MC model for ellipsoidal variations of planet-hosting stars and applications to the HAT-P-7 System. ApJ 751:112ADSCrossRefGoogle Scholar
  52. Kempton EMR, Lupu R, Owusu-Asare A, Slough P, Cale B (2017) Exo-transmit: an open-source code for calculating transmission spectra for exoplanet atmospheres of varied composition. PASP 129(4):044,402CrossRefGoogle Scholar
  53. Kenworthy MA, Mamajek EE (2015a) Exorings: exoring modelling software. Astrophysics Source Code Library, ascl:1501.012Google Scholar
  54. Kenworthy MA, Mamajek EE (2015b) Modeling giant extrasolar ring systems in eclipse and the case of J1407b: sculpting by Exomoons? ApJ 800:126ADSCrossRefGoogle Scholar
  55. Kipping DM (2010) Binning is sinning: morphological light-curve distortions due to finite integration time. MNRAS 408:1758–1769ADSCrossRefGoogle Scholar
  56. Kipping DM (2011) LUNA: an algorithm for generating dynamic planet-moon transits. MNRAS 416:689–709ADSGoogle Scholar
  57. Kipping DM (2012) An analytic model for rotational modulations in the photometry of spotted stars. MNRAS 427:2487–2511ADSCrossRefGoogle Scholar
  58. Kjurkchieva D, Dimitrov D, Vladev A, Yotov V (2013a) New approach for modelling of transiting exoplanets for arbitrary limb-darkening law. MNRAS 431:3654–3662ADSCrossRefGoogle Scholar
  59. Kjurkchieva D, Dimitrov D, Vladev A, Yotov V (2013b) TAC-maker: transit analytical curve maker. Astrophysics Source Code Library, ascl:1303.010Google Scholar
  60. Kostov VB, McCullough PR, Hinse TC et al (2013) A gas giant circumbinary planet transiting the F star primary of the eclipsing binary star KIC 4862625 and the independent discovery and characterization of the two transiting planets in the Kepler-47 system. ApJ 770:52ADSCrossRefGoogle Scholar
  61. Kostov VB, McCullough PR, Carter JA et al (2014) Kepler-413b: a slightly misaligned, Neptune-size transiting circumbinary planet. ApJ 784:14ADSCrossRefGoogle Scholar
  62. Kreidberg L (2015) batman: BAsic transit model calculation in python. PASP 127:1161Google Scholar
  63. Line MR, Wolf AS, Zhang X et al (2013) A systematic retrieval analysis of secondary eclipse spectra. I. A comparison of atmospheric retrieval techniques. ApJ 775:137Google Scholar
  64. Malavolta L (2016) PyORBIT: exoplanet orbital parameters and stellar activity. Astrophysics Source Code Library, ascl:1612.008Google Scholar
  65. Mandel K, Agol E (2002) Analytic light curves for planetary transit searches. ApJ 580:L171–L175ADSCrossRefGoogle Scholar
  66. Maxted PFL (2016) ellc: a fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets. A&A 591:A111Google Scholar
  67. Meschiari S, Wolf AS, Rivera E et al (2009) Systemic: a testbed for characterizing the detection of extrasolar planets. I. The systemic console package. PASP 121:1016Google Scholar
  68. Meschiari S, Wolf AS, Rivera E et al (2012) Systemic console: advanced analysis of exoplanetary data. Astrophysics Source Code Library, ascl:1210.018Google Scholar
  69. Montalto M, Boué G, Oshagh M et al (2014) Improvements on analytic modelling of stellar spots. MNRAS 444:1721–1728ADSCrossRefGoogle Scholar
  70. Montalto M, Boué G, Oshagh M et al (2015) KS integration: kelvin-stokes integration. Astrophysics Source Code Library, ascl:1505.004Google Scholar
  71. Morton TD (2012) An efficient automated validation procedure for exoplanet transit candidates. ApJ 761:6ADSCrossRefGoogle Scholar
  72. Morton TD (2015) VESPA: false positive probabilities calculator. Astrophysics Source Code Library, ascl:1503.011Google Scholar
  73. Nesvorný D (2009) Transit timing variations for eccentric and inclined exoplanets. ApJ 701:1116–1122ADSCrossRefGoogle Scholar
  74. Oshagh M, Boisse I, Boué G et al (2013) SOAP-T: a tool to study the light curve and radial velocity of a system with a transiting planet and a rotating spotted star. A&A 549:A35ADSCrossRefGoogle Scholar
  75. Pál A (2009) Tools for discovering and characterizing extrasolar planets. Ph.D. thesis, Department of Astronomy, Eötvös Loránd UniversityGoogle Scholar
  76. Pál A (2012) Light-curve modelling for mutual transits. MNRAS 420:1630–1635ADSCrossRefGoogle Scholar
  77. Parviainen H (2015a) PYTRANSIT: fast and easy exoplanet transit modelling in PYTHON. MNRAS 450:3233–3238ADSCrossRefGoogle Scholar
  78. Parviainen H (2015b) PyTransit: transit light curve modeling. Astrophysics Source Code Library, ascl:1505.024Google Scholar
  79. Parviainen H, Aigrain S (2015) LDTK: limb darkening toolkit. MNRAS 453:3821–3826ADSGoogle Scholar
  80. Parviainen H, Borsato L (2016) hpparvi/pytransit: v1.0-beta.4.  doi:10.5281/zenodo.157363,  https://doi.org/10.5281/zenodo.157363
  81. Parviainen H, Pope B, Aigrain S (2016) K2PS: K2 planet search. Astrophysics Source Code Library, ascl:1607.010Google Scholar
  82. Piskunov N, Valenti JA (2017) Spectroscopy made easy: evolution. A&A 597:A16ADSCrossRefGoogle Scholar
  83. Pope BJS, Parviainen H, Aigrain S (2016) Transiting exoplanet candidates from K2 Campaigns 5 and 6. MNRAS 461:3399–3409ADSCrossRefGoogle Scholar
  84. Prša A, Conroy KE, Horvat M et al (2016) Physics of eclipsing binaries. II. Toward the increased model fidelity. ApJS 227:29Google Scholar
  85. Rojo PM (2006) Transit spectroscopy of the extrasolar planet HD 209458B: the search for water. Ph.D. thesis, Cornell UniversityGoogle Scholar
  86. Seager S, Mallén-Ornelas G (2003) A unique solution of planet and star parameters from an extrasolar planet transit light curve. ApJ 585:1038–1055ADSCrossRefGoogle Scholar
  87. Smith AMS, Gandolfi D, Barragán O et al (2017) K2-99: a subgiant hosting a transiting warm Jupiter in an eccentric orbit and a long-period companion. MNRAS 464:2708–2716ADSCrossRefGoogle Scholar
  88. Southworth J (2013) The solar-type eclipsing binary system LL Aquarii. A&A 557:A119ADSCrossRefGoogle Scholar
  89. Southworth J, Maxted PFL, Smalley B (2004) Eclipsing binaries in open clusters – II. V453 Cyg in NGC 6871. MNRAS 351:1277–1289ADSCrossRefGoogle Scholar
  90. Ter Braak CJF (2006) A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces. Stat Comput 16:239–249MathSciNetCrossRefGoogle Scholar
  91. Torres G, Fressin F, Batalha NM et al (2011) Modeling Kepler transit light curves as false positives: rejection of blend scenarios for Kepler-9, and Validation of Kepler-9 d, a super-earth-size planet in a multiple system. ApJ 727:24ADSCrossRefGoogle Scholar
  92. Tregloan-Reed J, Southworth J, Tappert C (2013) Transits and starspots in the WASP-19 planetary system. MNRAS 428:3671–3679ADSCrossRefGoogle Scholar
  93. Tregloan-Reed J, Southworth J, Burgdorf M et al (2015) Transits and starspots in the WASP-6 planetary system. MNRAS 450:1760–1769ADSCrossRefGoogle Scholar
  94. Valenti JA, Piskunov N (1996) Spectroscopy made easy: a new tool for fitting observations with synthetic spectra. A&AS 118:595–603ADSCrossRefGoogle Scholar
  95. Valenti JA, Piskunov N (2012) SME: spectroscopy made easy. Astrophysics Source Code Library, ascl:1202.013Google Scholar
  96. Wang SX, Wright JT (2012) BOOTTRAN: error bars for Keplerian orbital parameters. Astrophysics Source Code Library, ascl:1210.030Google Scholar
  97. Welsh WF, Orosz JA, Short DR et al (2015) Kepler 453 b – the 10th Kepler transiting circumbinary planet. ApJ 809:26ADSCrossRefGoogle Scholar
  98. Wright J, Howard A (2012) RVLIN: fitting Keplerian curves to radial velocity data. Astrophysics Source Code Library, ascl:1210.031Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Instituto de Astrofísica de CanariasLa LagunaSpain
  2. 2.Departamento de AstrofísicaUniversidad de La LagunaLa LagunaSpain

Personalised recommendations