Skip to main content

Finding Planets via Gravitational Microlensing

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Exoplanets
  • 428 Accesses

Abstract

Gravitational microlensing is a technique to probe compact objects toward the center of the galaxy, such as distant stars, planets, white and brown dwarfs, black holes, and neutron stars. Since the first microlensing planet discovered in 2003, more than 40 planets have been detected with this technique, as well as several black hole candidates, and a population of potential free-floating planets. This chapter first provides a presentation of the microlensing theory, including numerical aspects to solve binary and triple lens problems, and a discussion of the microlensing planetary detection efficiency, with a high potential regarding cold planets beyond the snow line. It also explains how the planetary characterization can be facilitated when the microlensing light curves exhibit distortions due to second-order effects, such as parallax, planetary orbital motion, and extended source, and how they can also introduce degeneracies in the models. The chapter then reviews the main discoveries to date and the recent statistical results from high-cadence ground-based surveys and space-based observations, especially on the planet mass function and the distance distribution of the microlensing planetary systems. Finally, future prospects are discussed, with the expected advances from dedicated space missions, extending the planet sensitivity range down to Mercury masses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albrow MD, Beaulieu J-P, Caldwell JAR et al (1999) A complete set of solutions for caustic crossing binary microlensing events. ApJ 522:1022

    Article  ADS  Google Scholar 

  • Alcock C, Allsman RA, Alves D et al (1995) First observation of parallax in a gravitational microlensing event. ApJ 454:L125+

    Google Scholar 

  • An JH (1999) The binary gravitational lens and its extreme cases. A&A 349:108

    Google Scholar 

  • Batista V, Dong S, Gould A et al (2009) Mass measurement of a single unseen star and planetary detection efficiency for OGLE 2007-BLG-050. A&A 508:467

    Article  ADS  Google Scholar 

  • Batista V, Gould A, Dieters S et al (2011) MOA-2009-BLG-387Lb: a massive planet orbiting an M dwarf. A&A 529:102

    Article  Google Scholar 

  • Batista V, Beaulieu J-P, Gould A et al (2014) MOA-2011-BLG-293Lb: first microlensing planet possibly in the habitable zone. ApJ 780:54

    Article  ADS  Google Scholar 

  • Batista V, Beaulieu J-P, Bennett DP et al (2015) Confirmation of the OGLE-2005-BLG-169 planet signature and its characteristics with lens-source proper motion detection. ApJ 808:170

    Article  ADS  Google Scholar 

  • Beaulieu J-P, Bennett DP, Fouqué P et al (2006) Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing. Nature 439:437

    Google Scholar 

  • Beaulieu J-P, Kerins E, Mao S et al (2008) Towards a census of Earth-mass exo-planets with gravitational microlensing. arXiv:0808.0005

    Google Scholar 

  • Beaulieu J-P, Bennett DP, Batista V et al (2016) Revisiting the microlensing event OGLE 2012-BLG-0026: a solar mass star with two cold giant planets. ApJ 824:83

    Article  ADS  Google Scholar 

  • Bennett DP (2008) Detection of extrasolar planets by gravitational microlensing. Exoplanets, Springer praxis books. Praxis Publishing Ltd, Chichester, p 47. ISBN:978-3-540-74007-0

    Book  Google Scholar 

  • Bennett DP (2010) An efficient method for modeling high-magnification planetary microlensing events. ApJ 716:1408

    Article  ADS  Google Scholar 

  • Bennett DP, Rhie SH (1996) Detecting Earth-mass planets with gravitational microlensing. ApJ 472:660

    Article  ADS  Google Scholar 

  • Bennett DP, Becker AC, Calitz JJ et al (2002) The microlensing event MACHO-99-BLG-22/OGLE-1999-BUL-32: an intermediate mass black hole, or a lens in the bulge. astro.ph, 7006

    Google Scholar 

  • Bennett DP, Anderson J, Gaudi BS et al (2006) Characterization of gravitational microlensing planetary host stars. In: DPS meeting 38, id.45.14; Bull Am Astron Soc 38:1105

    Google Scholar 

  • Bennett DP, Bond IA, Udalski A et al (2008) A low-mass planet with a possible sub-stellar-mass host in microlensing event MOA-2007-BLG-192. ApJ 684:663

    Article  ADS  Google Scholar 

  • Bennett DP, Rhie SH, Nikolaev S et al (2010) Masses and orbital constraints for the OGLE-2006-BLG-109Lb,c Jupiter/Saturn analog planetary system. ApJ 713:837

    Article  ADS  Google Scholar 

  • Bennett DP, Sumi T, Bond I et al (2012) Planetary and other short binary microlensing events from the MOA short-event analysis. ApJ 757:119

    Article  ADS  Google Scholar 

  • Bennett DP, Batista V, Bond I et al (2014) MOA-2011-BLG-262Lb: a sub-Earth-mass moon orbiting a gas giant primary or a high velocity planetary system in the galactic bulge. ApJ 785:155

    Article  ADS  Google Scholar 

  • Bennett DP, Bhattacharya A, Anderson J et al (2015) Confirmation of the planetary microlensing signal and star and planet mass determinations for event OGLE-2005-BLG-169. ApJ 808:169

    Article  ADS  Google Scholar 

  • Bennett DP, Rhie SH, Udalski A et al (2016) The first circumbinary planet found by microlensing: OGLE-2007-BLG-349L(AB)c. AJ 152:125

    Article  ADS  Google Scholar 

  • Bensby T, Yee YC, Feltzing S et al (2013) Chemical evolution of the galactic bulge as traced by microlensed dwarf and subgiant stars. V. Evidence for a wide age distribution and a complex MDF. A&A 549, 147

    Google Scholar 

  • Bond IA, Abe F, Dodd RJ et al (2001) Real-time difference imaging analysis of MOA galactic bulge observations during 2000. MNRAS 327:868

    Article  ADS  Google Scholar 

  • Bond IA, Udalski A, Jaroszynski M et al (2004) OGLE 2003-BLG-235/MOA 2003-BLG-53: a planetary microlensing event. ApJ 606:155

    Article  ADS  Google Scholar 

  • Bonfils X, Delfosse X, Udry S et al (2013) The HARPS search for southern extra-solar planets. XXXI. The M-dwarf sample. A&A 549:109

    Google Scholar 

  • Boss A (2006) Rapid formation of gas giant planets around M dwarf stars. ApJ 643:501

    Article  ADS  Google Scholar 

  • Bowler BP, Liu MC, Shkolnik E et al (2015) Planets around low-mass stars (PALMS). IV. The outer architecture of M dwarf planetary systems. ApJS 216:7

    Google Scholar 

  • Bozza V (2010) Microlensing with an advanced contour integration algorithm: green’s theorem to third order, error control, optimal sampling and limb darkening. MNRAS 408:2188

    Article  ADS  Google Scholar 

  • Calchi Novati S, Scarpetta G (2016) Microlensing parallax for observers in heliocentric motion. ApJ 824:109

    Article  ADS  Google Scholar 

  • Calchi Novati S, Gould A, Udalski A et al (2015) Pathway to the galactic distribution of planets: combined Spitzer and ground-based microlens parallax measurements of 21 single-lens events. ApJ 804:20

    Article  ADS  Google Scholar 

  • Cassan A, Kubas D, Beaulieu J-P et al (2012) One or more bound planets per Milky Way star from microlensing observations. Nature 481:167

    Article  ADS  Google Scholar 

  • Chang K, Refsdal S (1979) Flux variations of QSO 0957+561 A, B and image splitting by stars near the light path. Nature 282:561

    Article  ADS  Google Scholar 

  • Choi J-Y, Han C, Udalski A et al (2013) Microlensing discovery of a population of very tight, very low mass binary brown dwarfs. ApJ 768:129

    Article  ADS  Google Scholar 

  • Clanton C, Gaudi BS (2016) Synthesizing exoplanet demographics: a single population of long-period planetary companions to M dwarfs consistent with microlensing, radial velocity, and direct imaging surveys. ApJ 819:125

    Article  ADS  Google Scholar 

  • Clanton C, Gaudi BS (2017) Constraining the frequency of free-floating planets from a synthesis of microlensing, radial velocity, and direct imaging survey results. ApJ 834:46

    Article  ADS  Google Scholar 

  • Cumming A, Butler RP, Marcy GW et al (2008) The Keck planet search: detectability and the minimum mass and orbital period distribution of extrasolar planets. PASP 120:531

    Article  ADS  Google Scholar 

  • Dominik M (1995) Improved routines for the inversion of the gravitational lens equation for a set of source points. A&A 109:597

    ADS  Google Scholar 

  • Dominik M (1998) A robust and efficient method for calculating the magnification of extended sources caused by gravitational lenses. A&A 333:79

    ADS  Google Scholar 

  • Dominik M (1999) The binary gravitational lens and its extreme cases. A&A 349:108

    ADS  Google Scholar 

  • Dominik M, Sahu KC(2000) Astrometric microlensing of stars. ApJ 534:213

    Article  ADS  Google Scholar 

  • Dong S, Udalski A, Gould A et al (2007) First space-based microlens parallax measurement: Spitzer observations of OGLE-2005-SMC-001. ApJ 664:862

    Article  ADS  Google Scholar 

  • Dong S, Gould A, Udalski A et al (2009) OGLE-2005-BLG-071Lb, the most massive M dwarf planetary companion? ApJ 695:970

    Article  ADS  Google Scholar 

  • Duchene G, Kraus A (2013) Stellar multiplicity. A&A 51:269

    Article  ADS  Google Scholar 

  • Duquennoy A, Mayor M (1991) Multiplicity among solar-type stars in the solar neighbourhood. II – distribution of the orbital elements in an unbiased sample. A&A 248:485

    Google Scholar 

  • Einstein A (1936) Lens-like action of a star by the deviation of light in the gravitational field. Science 84:506

    Article  ADS  MATH  Google Scholar 

  • Fukui A, Gould A, Sumi T et al (2015) OGLE-2012-BLG-0563Lb: a saturn-mass planet around an M dwarf with the mass constrained by Subaru AO imaging. ApJ 809:74

    Article  ADS  Google Scholar 

  • Furusawa K, Udalski A, Sumi T et al (2013) MOA-2010-BLG-328Lb: a sub-Neptune orbiting very late M dwarf? ApJ 779:91

    Article  ADS  Google Scholar 

  • Gaudi BS (2012) Microlensing surveys for exoplanets. ARA&A 50:411

    Article  ADS  Google Scholar 

  • Gaudi BS, Albrow MD, An J et al (2002) Microlensing constraints on the frequency of Jupiter-mass companions: analysis of 5 years of PLANET photometry. ApJ 566:463

    Article  ADS  Google Scholar 

  • Gaudi BS, Bennett DP, Udalski A et al (2008) Discovery of a Jupiter/Saturn analog with gravitational microlensing. Science 319:927

    Article  ADS  Google Scholar 

  • Gorbikov E, Brosch N, Afonso C (2010) A two-color CCD survey of the North celestial cap: I. The method. Ap&SS 326:203

    Article  Google Scholar 

  • Gould A (1994) MACHO velocities from satellite-based parallaxes. ApJ 421:75

    Article  ADS  Google Scholar 

  • Gould A (1999) Microlens parallaxes with SIRTF. ApJ 514:869

    Article  ADS  Google Scholar 

  • Gould A (2008) Hexadecapole approximation in planetary microlensing. ApJ 681:1593

    Article  ADS  Google Scholar 

  • Gould A, Gaucherel C (1997) Stokes’s theorem applied to microlensing of finite sources. ApJ 477:580

    Article  ADS  Google Scholar 

  • Gould A, Horne K (2013) Kepler-like multi-plexing for mass production of microlens parallaxes. ApJ 779:28

    Article  ADS  Google Scholar 

  • Gould A, Loeb A (1992) Discovering planetary systems through gravitational microlenses. ApJ 396:104

    Article  ADS  Google Scholar 

  • Gould A, Udalski A, An D et al (2006) Microlens OGLE-2005-BLG-169 implies that cool Neptune-like planets are common. ApJ 644:37

    Article  ADS  Google Scholar 

  • Gould A, Dong S, Gaudi BS (2010) Frequency of solar-like systems and of ice and gas giants beyond the snow line from high-magnification microlensing events in 2005–2008. ApJ 720:1073

    Article  ADS  Google Scholar 

  • Gould A, Carey S, Yee J (2014a) Galactic distribution of planets from Spitzer microlens parallaxes. sptz.prop11006G

    Google Scholar 

  • Gould A, Udalski A, Shin I-G et al (2014b) A terrestrial planet in a ∼1-AU orbit around one member of a ∼15-AU binary. Science 345:46

    Article  ADS  Google Scholar 

  • Gould A, Yee J, Carey S (2015) Galactic distribution of planets from high-magnification microlensing events. sptz.prop12013G

    Google Scholar 

  • Griest K, Safizadeh N (1998) The use of high-magnification microlensing events in discovering extrasolar planets. ApJ 500:37

    Article  ADS  Google Scholar 

  • Han C, Gould A (1995) Statistics of microlensing optical depth. ApJ 449:521

    Article  ADS  Google Scholar 

  • Han C, Gould A (2003) Stellar contribution to the galactic bulge microlensing optical depth. ApJ 592:172

    Article  ADS  Google Scholar 

  • Han C, Jung YK, Udalski A et al (2016) Microlensing discovery of a tight, low-mass-ratio planetary-mass object around an old field brown dwarf. ApJ 778:38

    Article  ADS  Google Scholar 

  • Han C, Udalski A, Gould A et al (2016a) OGLE-2015-BLG-0479LA,B: binary gravitational microlens characterized by simultaneous ground-based and space-based observations. ApJ 828:53

    Article  ADS  Google Scholar 

  • Han C, Udalski A, Gould A et al (2016b) OGLE-2015-BLG-0051/KMT-2015-BLG-0048Lb: a giant planet orbiting a low-mass bulge star discovered by high-cadence microlensing surveys. AJ 152:95

    Article  ADS  Google Scholar 

  • Henderson CB, Park H, Sumi T et al (2014) Candidate gravitational microlensing events for future direct lens imaging. ApJ 794:71

    Article  ADS  Google Scholar 

  • Henderson CB, Poleski R, Penny M et al (2016) Campaign 9 of the K2 mission: observational parameters, scientific drivers, and community involvement for a simultaneous space- and ground-based microlensing survey. PASP 128:14401

    Article  Google Scholar 

  • Hog E, Novikov ID, Polnarev AG et al (1995) MACHO photometry and astrometry. A&A 294:287

    ADS  Google Scholar 

  • Howard AW, Marcy GW, Johnson JA et al (2010) The occurrence and mass distribution of close-in super-Earths, Neptunes, and Jupiters. Science 330:653

    Article  ADS  Google Scholar 

  • Howell SB, Sobeck C, Haas M et al (2014) The K2 mission: characterization and early results. PASP 126:398

    Article  ADS  Google Scholar 

  • Ida S, Lin DNC (2004) Toward a deterministic model of planetary formation. I. A desert in the mass and semimajor axis distributions of extrasolar planets. ApJ 604:388

    Google Scholar 

  • Janczak J, Fukui A, Dong S et al (2010) Sub-Saturn planet MOA-2008-BLG-310Lb: likely to be in the galactic bulge. ApJ 711:731

    Article  ADS  Google Scholar 

  • Johnson JA, Aller KM, Howard AW et al (2010) Giant planet occurrence in the stellar mass-metallicity plane. PASP 122:905

    Article  ADS  Google Scholar 

  • Jung YK, Udalski A, Sumi T et al (2015) OGLE-2013-BLG-0102LA,B: microlensing binary with components at star/brown dwarf and brown dwarf/planet boundaries. ApJ 798:123

    Article  ADS  Google Scholar 

  • Kaib NA, Raymond SN, Duncan M (2013) Planetary system disruption by galactic perturbations to wide binary stars. Nature 493:381

    Article  ADS  Google Scholar 

  • Kains N,Street RA, Choi J-Y et al (2013) A giant planet beyond the snow line in microlensing event OGLE-2011-BLG-0251. A&A 552:70

    Article  Google Scholar 

  • Kains N, Bramich DM, Sahu KC et al (2016) Searching for intermediate-mass black holes in globular clusters with gravitational microlensing. MNRAS 460:2025

    Article  ADS  Google Scholar 

  • Kervella P, Thévenin F, Di Folco E (2004) The angular sizes of dwarf stars and subgiants. Surface brightness relations calibrated by interferometry. A&A 426:297

    Google Scholar 

  • Kim S-L, Lee C-U, Park B-G et al (2016) KMTNET: a network of 1.6 m wide-field optical telescopes installed at three Southern observatories. JKAS 49:37

    Google Scholar 

  • Koshimoto N, Udalski A, Beaulieu J-P et al (2016) OGLE-2012-BLG-0950Lb: the first planet mass measurement from only microlens parallax and lens flux. AJ 153:1

    Article  ADS  Google Scholar 

  • Kubas D, Beaulieu J-P, Bennett DP et al (2012) A frozen super-Earth orbiting a star at the bottom of the main sequence. A&A 540:78

    Article  Google Scholar 

  • Lafrenière D, Doyon R, Marois C et al (2007) The gemini deep planet survey. ApJ 670:1367

    Article  ADS  Google Scholar 

  • Laughlin G, Bodenheimer P, Adams FC (2004) The core accretion model predicts few Jovian-mass planets orbiting red dwarfs. ApJ 612:73

    Article  ADS  Google Scholar 

  • Lodato G, Delgado-Donate E, Clarke CJ (2005) Constraints on the formation mechanism of the planetary mass companion of 2MASS 1207334-393254. MNRAS 364:91

    Article  ADS  Google Scholar 

  • Mao S (1999) An ongoing parallax microlensing event OGLE-1999-CAR-1 toward Carina. A&A 350:L19

    ADS  Google Scholar 

  • Mao S, Paczynski B (1991) Gravitational microlensing by double stars and planetary systems. ApJ 374:37

    Article  ADS  Google Scholar 

  • Mao S, Smith MC, Wazniak P et al (2002) Optical gravitational lensing experiment OGLE-1999-BUL-32: the longest ever microlensing event – evidence for a stellar mass black hole? MNRAS 329:349

    Article  ADS  Google Scholar 

  • Mayor M, Bonfils X, Forveille T et al (2009) The HARPS search for southern extra-solar planets. XVIII. An Earth-mass planet in the GJ 581 planetary system. A&A 507:487

    Google Scholar 

  • Montet BT, Crepp JR, Johnson JA (2014) The TRENDS High-contrast imaging survey. IV. The occurrence rate of giant planets around M dwarfs. ApJ 781:28

    Google Scholar 

  • Muraki Y, Han C, Bennett DP et al (2011) Discovery and mass measurements of a cold, 10 Earth mass planet and its host star. ApJ 741:22

    Article  ADS  Google Scholar 

  • Nataf DM, Gould A, Fouqué P et al (2013) Reddening and extinction toward the galactic bulge from OGLE-III: the inner milky way’s Rv 2.5 extinction curve. ApJ 769:88

    Google Scholar 

  • Nemiroff RJ, Wickramasinghe (1994) Finite source sizes and the information content of macho-type lens search light curves. ApJ 424:21

    Google Scholar 

  • Paczynski B (1986) Gravitational microlensing by the galactic halo. ApJ 304:1

    Article  ADS  Google Scholar 

  • Pejcha O, Heyrovsky D (2009) Extended-source effect and chromaticity in two-point-mass microlensing. ApJ 690:1772

    Article  ADS  Google Scholar 

  • Penny MT, Kerins E, Rattenbury N et al (2013) ExELS: an exoplanet legacy science proposal for the ESA Euclid mission – I. Cold exoplanets. MNRAS 434:2

    Article  Google Scholar 

  • Penny MT, Rattenbury NJ, Gaudi BS et al (2016) Predictions for the detection and characterization of a population of free-floating planets with K2 campaign 9. arXiv:1605.01059

    Google Scholar 

  • Poindexter S, Afonso C, Bennett DP et al (2005) Systematic analysis of 22 microlensing parallax candidates. ApJ 633:914

    Article  ADS  Google Scholar 

  • Poleski R, Skowron J, Udalski A et al (2014) Triple microlens OGLE-2008-BLG-092L: binary stellar system with a circumprimary Uranus-type planet. ApJ 795:42

    Article  ADS  Google Scholar 

  • Raghavan D, McAlister HA, Henry TJ et al (2002) A survey of stellar families: multiplicity of solar-type stars. ApJ 190:1

    Google Scholar 

  • Rattenbury NJ, Bond IA, Skuljan J et al (2002) Planetary microlensing at high magnification. MNRAS 335:159

    Article  ADS  Google Scholar 

  • Refsdal S(1964) The gravitational lens effect. MNRAS 128:295

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Refsdal S(1966) On the possibility of determining the distances and masses of stars from the gravitational lens effect. MNRAS 134:315

    Google Scholar 

  • Rhie SH (1997) Infimum Microlensing Amplification of the maximum number of images of n-Point lens systems. ApJ 484:63

    Article  ADS  Google Scholar 

  • Rhie SH (2002) How cumbersome is a tenth order polynomial? The case of gravitational triple lens equation. Astroph 2294R. arXiv:astro-ph/0202294

    Google Scholar 

  • Rhie SH, Bennett DP, Becker AC et al (2000) On planetary companions to the MACHO 98-BLG-35 microlens star. ApJ 533:378

    Article  ADS  Google Scholar 

  • Sako T, Sekiguchi T, Sasaki M et al (2008) MOA-cam3: a wide-field mosaic CCD camera for a gravitational microlensing survey in New Zealand. ExA 22:51

    ADS  Google Scholar 

  • Schneider DP, Weiss A (1986) The two-point-mass lens – detailed investigation of a special asymmetric gravitational lens. A&A 164:237

    ADS  Google Scholar 

  • Shvartzvald Y, Udalski A, Gould A et al (2015) Spitzer microlens measurement of a massive remnant in a well-separated binary. ApJ 814:111

    Article  ADS  Google Scholar 

  • Shvartzvald Y, Maoz D, Udalski A et al (2016) The frequency of snowline-region planets from four years of OGLE-MOA-Wise second-generation microlensing. MNRAS 457:4089

    Article  ADS  Google Scholar 

  • Skowron, J, Udalski A, Gould A et al (2011) Binary microlensing event OGLE-2009-BLG-020 gives verifiable mass, distance, and orbit predictions. ApJ 738:87

    Article  ADS  Google Scholar 

  • Smith C, Rest A, Hiriart R et al (2002) Real-time time-variability analysis of GB to TB datasets: experience from SuperMACHO and supernova projects at NOAO/CTIO. In: Tyson JA, Woll S (eds) Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) conference, vol 4836, pp 395–405

    Google Scholar 

  • Snodgrass C, Horne K, Tsapras Y (2004) The abundance of galactic planets from OGLE-III 2002 microlensing data. MNRAS 351:967

    Article  ADS  Google Scholar 

  • Spergel D, Gehrels N, Baltay C et al (2015) Wide-field infrarRed survey telescope-astrophysics focused telescope assets WFIRST-AFTA 2015 report. eprint arXiv:1503.03757

    Google Scholar 

  • Street RA, Udalski A, Calchi Novati S et al (2015) Spitzer parallax of OGLE-2015-BLG-0966: a cold Neptune in the galactic disk. ApJ 819:93

    Article  ADS  Google Scholar 

  • Sumi T, Bennett DP, Bond IA et al (2010) A cold Neptune-mass planet OGLE-2007-BLG-368Lb: cold Neptunes are common. ApJ 710:1641

    Article  ADS  Google Scholar 

  • Sumi T, Kamiya K, Bennett DP et al (2011) Unbound or distant planetary mass population detected by gravitational microlensing. Nature 473:349

    Article  ADS  Google Scholar 

  • Sumi T, Bennett DP, Bond IA et al (2013) The microlensing event rate and optical depth toward the galactic bulge from MOA-II. ApJ 778:150

    Article  ADS  Google Scholar 

  • Sumi T, Udalski A, Bennett DP et al (2016) The first Neptune analog or super-Earth with a Neptune-like orbit: MOA-2013-BLG-605Lb. ApJ 825:112

    Article  ADS  Google Scholar 

  • Suzuki D, Bennett DP, Sumi T et al (2016) The exoplanet mass-ratio function from the MOA-II survey: discovery of a break and likely peak at a Neptune mass. ApJ 833:145

    Article  ADS  Google Scholar 

  • Thompson TA (2013) Gas giants in hot water: inhibiting giant planet formation and planet habitability in dense star clusters through cosmic time. MNRAS 431:63

    Article  ADS  Google Scholar 

  • Udalski A (2003) The optical gravitational lensing experiment. Real time data analysis systems in the OGLE-III survey. Acta Astron 53:291

    Google Scholar 

  • Udalski A, Yee JC, Gould A et al (2015) Spitzer as a microlens parallax satellite: mass measurement for the OGLE-2014-BLG-0124L planet and its host star. ApJ 799:237

    Article  ADS  Google Scholar 

  • Wambsganss J (1997) Discovering galactic planets by gravitational microlensing: magnification patterns and light curves. MNRAS 284:172

    Article  ADS  Google Scholar 

  • Wang J, Fischer DA (2015) Revealing a universal planet-metallicity correlation for planets of different sizes around solar-type stars. AJ 149:14

    Article  ADS  Google Scholar 

  • Werner MW, Roellig TL, Low FJ et al (2004) The Spitzer space telescope mission. ApJ 154:1

    Article  Google Scholar 

  • Winn JN, Fabrycky DC (2015) The occurrence and architecture of exoplanetary systems. ARA&A 53:409

    Article  ADS  Google Scholar 

  • Witt HJ (1990) Statistical investigations of the amplification near gravitational lens caustics. In: Mellier Y, Fort B, Saucail G (eds) Gravitational lensing. Lecture notes in physics, vol 360. Springer, Berlin, pp 192–+

    Google Scholar 

  • Witt HJ, Mao S (1995) On the minimum magnification between caustic crossings for microlensing by binary and multiple stars. ApJ 447:L105+

    Google Scholar 

  • Wyrzykowski L, Kostrzewa-Rutkowska Z, Skowron J et al (2016) Black hole, neutron star and white dwarf candidates from microlensing with OGLE-III. MNRAS 458:3012

    Article  ADS  Google Scholar 

  • Yee JC, Udalski A, Calchi Novati S et al (2015) First space-based microlens parallax measurement of an isolated star: Spitzer observations of OGLE-2014-BLG-0939. ApJ 802:76

    Article  ADS  Google Scholar 

  • Yee JC, Johnson JA, Skowron J et al (2016) Two stars two ways: confirming a microlensing binary lens solution with a spectroscopic measurement of the orbit. ApJ 821:121

    Article  ADS  Google Scholar 

  • Zhu W, Wang J, Huang C et al (2016) Dependence of small planet frequency on stellar metallicity hidden by their prevalence. ApJ 832:196

    Article  ADS  Google Scholar 

  • Zhu W, Udalski A, Calchi Novati S et al (2017) Toward a galactic distribution of planets. I. Methodology & planet sensitivities of the 2015 high-cadence Spitzer microlens sample. arXiv:1701.05191

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginie Batista .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Batista, V. (2018). Finding Planets via Gravitational Microlensing. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_120-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_120-2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Finding Planets via Gravitational Microlensing
    Published:
    15 December 2017

    DOI: https://doi.org/10.1007/978-3-319-30648-3_120-2

  2. Original

    Finding Planets via Gravitational Microlensing
    Published:
    13 October 2017

    DOI: https://doi.org/10.1007/978-3-319-30648-3_120-1