Atmospheric Retrieval of Exoplanets

  • Nikku Madhusudhan
Living reference work entry


Exoplanetary atmospheric retrieval refers to the inference of atmospheric properties of an exoplanet given an observed spectrum. The atmospheric properties include the chemical compositions, temperature profiles, clouds/hazes, and energy circulation. These properties, in turn, can provide key insights into the atmospheric physicochemical processes of exoplanets as well as their formation mechanisms. Major advancements in atmospheric retrieval have been made in the last decade, thanks to a combination of state-of-the-art spectroscopic observations and advanced atmospheric modeling and statistical inference methods. These developments have already resulted in key constraints on the atmospheric H2O abundances, temperature profiles, and other properties for several exoplanets. Upcoming facilities such as the JWST will further advance this area. The present chapter is a pedagogical review of this exciting frontier of exoplanetary science. The principles of atmospheric retrievals of exoplanets are discussed in detail, including parametric models and statistical inference methods, along with a review of key results in the field. Some of the main challenges in retrievals with current observations are discussed along with new directions and the future landscape.



The author acknowledges the tireless efforts by various groups working on exoplanetary atmospheric retrieval which has led to the exponential rise in this area in the last 8 years. The author thanks A. Pinhas for help with Table 1 and Fig. 3, A. Pinhas and R. MacDonald for help with references, and L. Welbanks for help with Fig. 2.


  1. Asplund M, Grevesse N, Sauval AJ, Scott P (2009) The chemical composition of the sun. ARA&A 47:481–522ADSCrossRefGoogle Scholar
  2. Atreya SK, Crida A, Guillot T et al (2016) The origin and evolution of Saturn, with exoplanet perspective. ArXiv e-printsGoogle Scholar
  3. Barman T (2007) Identification of absorption features in an extrasolar planet atmosphere. ApJ 661:L191–L194ADSCrossRefGoogle Scholar
  4. Barman TS, Macintosh B, Konopacky QM, Marois C (2011) Clouds and chemistry in the atmosphere of extrasolar planet HR8799b. ApJ 733:65ADSCrossRefGoogle Scholar
  5. Barstow JK, Aigrain S, Irwin PGJ, Sing DK (2017) A consistent retrieval analysis of 10 Hot Jupiters observed in transmission. ApJ 834:50ADSCrossRefGoogle Scholar
  6. Benneke B, Seager S (2012) Atmospheric retrieval for super-earths: uniquely constraining the atmospheric composition with transmission spectroscopy. ApJ 753:100ADSCrossRefGoogle Scholar
  7. Benneke B, Seager S (2013) How to distinguish between cloudy Mini-Neptunes and water/volatile-dominated super-earths. ApJ 778:153ADSCrossRefGoogle Scholar
  8. Bétrémieux Y, Kaltenegger L (2015) Refraction in planetary atmospheres: improved analytical expressions and comparison with a new ray-tracing algorithm. MNRAS 451:1268–1283ADSCrossRefGoogle Scholar
  9. Birkby JL, de Kok RJ, Brogi M, Schwarz H, Snellen IAG (2017) Discovery of water at high spectral resolution in the atmosphere of 51 Peg b. AJ 153:138ADSCrossRefGoogle Scholar
  10. Blecic P (2015) Observations, thermochemical calculations, and modeling of exoplanetary atmospheres. Ph.D. thesis, University of Central FloridaGoogle Scholar
  11. Brogi M, Snellen IAG, de Kok RJ et al (2012) The signature of orbital motion from the dayside of the planet τ Boötis b. Nature 486:502–504ADSCrossRefGoogle Scholar
  12. Brogi M, Line M, Bean J, Désert JM, Schwarz H (2017) A framework to combine low- and high-resolution spectroscopy for the atmospheres of transiting exoplanets. ApJ 839:L2ADSCrossRefGoogle Scholar
  13. Brown TM (2001) Transmission spectra as diagnostics of extrasolar giant planet atmospheres. ApJ 553:1006–1026ADSCrossRefGoogle Scholar
  14. Burrows A, Hubbard WB, Lunine JI, Liebert J (2001) The theory of brown dwarfs and extrasolar giant planets. Rev Mod Phys 73:719–765ADSCrossRefGoogle Scholar
  15. Burrows A, Hubeny I, Budaj J, Knutson HA, Charbonneau D (2007) Theoretical spectral models of the planet HD 209458b with a thermal inversion and water emission bands. ApJ 668: L171–L174ADSCrossRefGoogle Scholar
  16. Burrows A, Budaj J, Hubeny I (2008) Theoretical spectra and light curves of close-in extrasolar giant planets and comparison with data. ApJ 678:1436–1457ADSCrossRefGoogle Scholar
  17. Charbonneau D, Knutson HA, Barman T et al (2008) The broadband infrared emission spectrum of the exoplanet HD 189733b. ApJ 686:1341–1348ADSCrossRefGoogle Scholar
  18. Cowan NB, Machalek P, Croll B et al (2012) Thermal phase variations of WASP-12b: defying predictions. ApJ 747:82ADSCrossRefGoogle Scholar
  19. Crossfield IJM, Barman T, Hansen BMS, Tanaka I, Kodama T (2012) Re-evaluating WASP-12b: strong emission at 2.315 μm, deeper occultations, and an isothermal atmosphere. ApJ 760:140ADSCrossRefGoogle Scholar
  20. Cubillos P (2015) In pursuit of new worlds: searches for and studies of transiting exoplanets from three space-based observatories. Ph.D. thesis, University of Central FloridaGoogle Scholar
  21. de Wit J (2015) Maps and masses of transiting exoplanets: towards new insights into atmospheric and interior properties of planets. ArXiv e-printsGoogle Scholar
  22. Deming D, Wilkins A, McCullough P et al (2013) Infrared transmission spectroscopy of the exoplanets HD 209458b and XO-1b using the wide field camera-3 on the hubble space telescope. ApJ 774:95ADSCrossRefGoogle Scholar
  23. Diamond-Lowe H, Stevenson KB, Bean JL, Line MR, Fortney JJ (2014) New analysis indicates no thermal inversion in the atmosphere of HD 209458b. ApJ 796:66ADSCrossRefGoogle Scholar
  24. Eastman J, Gaudi BS, Agol E (2013) EXOFAST: a fast exoplanetary fitting suite in IDL. PASP 125:83ADSCrossRefGoogle Scholar
  25. Evans TM, Sing DK, Kataria T et al (2017) An ultrahot gas-giant exoplanet with a stratosphere. Nature 548:58–61ADSCrossRefGoogle Scholar
  26. Feng YK, Line MR, Fortney JJ et al (2016) The impact of non-uniform thermal structure on the interpretation of exoplanet emission spectra. ApJ 829:52ADSCrossRefGoogle Scholar
  27. Feroz F, Hobson MP, Bridges M (2009) MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics. MNRAS 398:1601–1614ADSCrossRefGoogle Scholar
  28. Fletcher LN, Orton GS, Teanby NA, Irwin PGJ, Bjoraker GL (2009) Methane and its isotopologues on Saturn from Cassini/CIRS observations. Icarus 199:351–367ADSCrossRefGoogle Scholar
  29. Ford EB (2005) Quantifying the uncertainty in the orbits of extrasolar planets. AJ 129:1706–1717ADSCrossRefGoogle Scholar
  30. Ford EB (2006) Improving the efficiency of Markov chain monte carlo for analyzing the orbits of extrasolar planets. ApJ 642:505–522ADSMathSciNetCrossRefGoogle Scholar
  31. Fortney JJ, Lodders K, Marley MS, Freedman RS (2008) A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. ApJ 678:1419–1435ADSCrossRefGoogle Scholar
  32. Fortney JJ, Shabram M, Showman AP et al (2010) Transmission spectra of three-dimensional hot jupiter model atmospheres. ApJ 709:1396–1406ADSCrossRefGoogle Scholar
  33. Fraine J, Deming D, Benneke B et al (2014) Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet. Nature 513:526–529ADSCrossRefGoogle Scholar
  34. Gandhi S, Madhusudhan N (2017) GENESIS: new self-consistent models of exoplanetary spectra. ArXiv e-printsGoogle Scholar
  35. Gandhi S, Madhusudhan N (2018) Retrieval of exoplanet emission spectra with HyDRA. MNRAS 474:271–288ADSCrossRefGoogle Scholar
  36. Greene TP, Line MR, Montero C et al (2016) Characterizing transiting exoplanet atmospheres with JWST. ApJ 817:17ADSCrossRefGoogle Scholar
  37. Grillmair CJ, Burrows A, Charbonneau D et al (2008) Strong water absorption in the dayside emission spectrum of the planet HD189733b. Nature 456:767–769ADSCrossRefGoogle Scholar
  38. Guillot T (2010) On the radiative equilibrium of irradiated planetary atmospheres. A&A 520:A27ADSzbMATHCrossRefGoogle Scholar
  39. Haynes K, Mandell AM, Madhusudhan N, Deming D, Knutson H (2015) Spectroscopic evidence for a temperature inversion in the dayside atmosphere of hot jupiter WASP-33b. ApJ 806:146ADSCrossRefGoogle Scholar
  40. Heng K, Kitzmann D (2017) The theory of transmission spectra revisited: a semi-analytical method for interpreting WFC3 data and an unresolved challenge. MNRAS 470:2972–2981ADSCrossRefGoogle Scholar
  41. Heng K, Marley M (2017) Radiative transfer for exoplanet atmospheres. ArXiv e-printsGoogle Scholar
  42. Hubbard WB, Fortney JJ, Lunine JI et al (2001) Theory of extrasolar giant planet transits. ApJ 560:413–419ADSCrossRefGoogle Scholar
  43. Hubeny I, Burrows A, Sudarsky D (2003) A possible bifurcation in atmospheres of strongly irradiated stars and planets. ApJ 594:1011–1018ADSCrossRefGoogle Scholar
  44. Irwin PGJ, Teanby NA, de Kok R et al (2008) The NEMESIS planetary atmosphere radiative transfer and retrieval tool. J Quant Spectr Rad Transf 109:1136–1150ADSCrossRefGoogle Scholar
  45. Karkoschka E, Tomasko MG (2011) The haze and methane distributions on Neptune from HST-STIS spectroscopy. Icarus 211:780–797ADSCrossRefGoogle Scholar
  46. Knutson HA, Charbonneau D, Allen LE, Burrows A, Megeath ST (2008) The 3.6–8.0 μm broadband emission spectrum of HD 209458b: evidence for an atmospheric temperature inversion. ApJ 673:526–531ADSCrossRefGoogle Scholar
  47. Knutson HA, Charbonneau D, Burrows A, O’Donovan FT, Mandushev G (2009) Detection of a temperature inversion in the broadband infrared emission spectrum of TrES-4. ApJ 691: 866–874ADSCrossRefGoogle Scholar
  48. Knutson HA, Lewis N, Fortney JJ et al (2012) 3.6 and 4.5 μm phase curves and evidence for non-equilibrium chemistry in the atmosphere of extrasolar planet HD 189733b. ApJ 754:22ADSCrossRefGoogle Scholar
  49. Knutson HA, Benneke B, Deming D, Homeier D (2014) A featureless transmission spectrum for the Neptune-mass exoplanet GJ436b. Nature 505:66–68ADSCrossRefGoogle Scholar
  50. Konopacky QM, Barman TS, Macintosh BA, Marois C (2013) Detection of carbon monoxide and water absorption lines in an exoplanet atmosphere. Science 339:1398–1401ADSCrossRefGoogle Scholar
  51. Kreidberg L, Bean JL, Désert JM et al (2014a) Clouds in the atmosphere of the super-earth exoplanet GJ1214b. Nature 505:69–72ADSCrossRefGoogle Scholar
  52. Kreidberg L, Bean JL, Désert JM et al (2014b) A precise water abundance measurement for the hot Jupiter WASP-43b. ApJ 793:L27ADSCrossRefGoogle Scholar
  53. Kreidberg L, Line MR, Bean JL et al (2015) A detection of water in the transmission spectrum of the hot Jupiter WASP-12b and implications for its atmospheric composition. ApJ 814:66ADSCrossRefGoogle Scholar
  54. Lanotte AA, Gillon M, Demory BO et al (2014) A global analysis of Spitzer and new HARPS data confirms the loneliness and metal-richness of GJ 436 b. A&A 572:A73CrossRefGoogle Scholar
  55. Lavie B, Mendonça JM, Mordasini C et al (2017) HELIOS-RETRIEVAL: an open-source, nested sampling atmospheric retrieval code; application to the HR 8799 exoplanets and inferred constraints for planet formation. AJ 154:91ADSCrossRefGoogle Scholar
  56. Lecavelier Des Etangs A, Pont F, Vidal-Madjar A, Sing D (2008) Rayleigh scattering in the transit spectrum of HD 189733b. A&A 481:L83–L86ADSCrossRefGoogle Scholar
  57. Lee JM, Fletcher LN, Irwin PGJ (2012) Optimal estimation retrievals of the atmospheric structure and composition of HD 189733b from secondary eclipse spectroscopy. MNRAS 420:170–182ADSCrossRefGoogle Scholar
  58. Lee JM, Heng K, Irwin PGJ (2013) Atmospheric retrieval analysis of the directly imaged exoplanet HR 8799b. ApJ 778:97Google Scholar
  59. Lee JM, Irwin PGJ, Fletcher LN, Heng K, Barstow JK (2014) Constraining the atmospheric composition of the day-night terminators of HD 189733b: atmospheric retrieval with aerosols. ApJ 789:14ADSCrossRefGoogle Scholar
  60. Line MR, Parmentier V (2016) The influence of nonuniform cloud cover on transit transmission spectra. ApJ 820:78ADSCrossRefGoogle Scholar
  61. Line MR, Zhang X, Vasisht G et al (2012) Information content of exoplanetary transit spectra: an initial look. ApJ 749:93ADSCrossRefGoogle Scholar
  62. Line MR, Wolf AS, Zhang X et al (2013) A systematic retrieval analysis of secondary eclipse spectra. I. A comparison of atmospheric retrieval techniques. ApJ 775:137ADSCrossRefGoogle Scholar
  63. Line MR, Knutson H, Wolf AS, Yung YL (2014) A systematic retrieval analysis of secondary eclipse spectra. II. A uniform analysis of nine planets and their C to O ratios. ApJ 783:70ADSCrossRefGoogle Scholar
  64. Line MR, Teske J, Burningham B, Fortney JJ, Marley MS (2015) Uniform atmospheric retrieval analysis of ultracool dwarfs. I. Characterizing benchmarks, Gl 570D and HD 3651B. ApJ 807:183ADSCrossRefGoogle Scholar
  65. Line MR, Stevenson KB, Bean J et al (2016) No thermal inversion and a solar water abundance for the hot Jupiter HD 209458b from HST/WFC3 spectroscopy. AJ 152:203ADSCrossRefGoogle Scholar
  66. Lupu RE, Marley MS, Lewis N et al (2016) Developing atmospheric retrieval methods for direct imaging spectroscopy of gas giants in reflected light. I. Methane abundances and basic cloud properties. AJ 152:217ADSCrossRefGoogle Scholar
  67. MacDonald RJ, Madhusudhan N (2017a) HD 209458b in new light: evidence of nitrogen chemistry, patchy clouds and sub-solar water. MNRAS 469:1979–1996ADSCrossRefGoogle Scholar
  68. MacDonald RJ, Madhusudhan N (2017b) Signatures of nitrogen chemistry in hot jupiter atmospheres. ApJ 850:L15ADSCrossRefGoogle Scholar
  69. Madhusudhan N (2012) C/O Ratio as a dimension for characterizing exoplanetary atmospheres. ApJ 758:36ADSCrossRefGoogle Scholar
  70. Madhusudhan N, Redfield S (2015) Optimal measures for characterizing water-rich super-Earths. Int. J. Astrobiol. 14:177–189ADSCrossRefGoogle Scholar
  71. Madhusudhan N, Seager S (2009) A temperature and abundance retrieval method for exoplanet atmospheres. ApJ 707:24–39ADSCrossRefGoogle Scholar
  72. Madhusudhan N, Seager S (2010) On the inference of thermal inversions in hot jupiter atmospheres. ApJ 725:261–274ADSCrossRefGoogle Scholar
  73. Madhusudhan N, Seager S (2011) High metallicity and non-equilibrium chemistry in the dayside atmosphere of hot-neptune GJ 436b. ApJ 729:41ADSCrossRefGoogle Scholar
  74. Madhusudhan N, Harrington J, Stevenson KB et al (2011a) A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b. Nature 469:64–67Google Scholar
  75. Madhusudhan N, Mousis O, Johnson TV, Lunine JI (2011b) Carbon-rich giant planets: atmospheric chemistry, thermal inversions, spectra, and formation conditions. ApJ 743:191ADSCrossRefGoogle Scholar
  76. Madhusudhan N, Crouzet N, McCullough PR, Deming D, Hedges C (2014a) H2O abundances in the atmospheres of three hot Jupiters. ApJ 791:L9ADSCrossRefGoogle Scholar
  77. Madhusudhan N, Knutson H, Fortney JJ, Barman T (2014b) Exoplanetary atmospheres. Protostars and planets VI, pp 739–762Google Scholar
  78. Madhusudhan N, Agúndez M, Moses JI, Hu Y (2016) Exoplanetary atmospheres–chemistry, formation conditions, and habitability. Space Sci Rev 205:285–348ADSCrossRefGoogle Scholar
  79. Mandell AM, Haynes K, Sinukoff E et al (2013) Exoplanet Transit Spectroscopy Using WFC3: WASP-12 b, WASP-17 b, and WASP-19 b. ApJ 779:128ADSCrossRefGoogle Scholar
  80. Marley MS, Saumon D, Cushing M et al (2012) Masses, radii, and cloud properties of the HR 8799 planets. ApJ 754:135ADSCrossRefGoogle Scholar
  81. McCullough P, MacKenty J (2012) Considerations for using Spatial Scans with WFC3. Tech. rep.Google Scholar
  82. McCullough PR, Crouzet N, Deming D, Madhusudhan N (2014) Water vapor in the spectrum of the extrasolar planet HD 189733b. I. The transit. ApJ 791:55ADSCrossRefGoogle Scholar
  83. Miller-Ricci E, Seager S, Sasselov D (2009) The atmospheric signatures of super-earths: how to distinguish between hydrogen-rich and hydrogen-poor atmospheres. ApJ 690:1056–1067ADSCrossRefGoogle Scholar
  84. Mollière P, van Boekel R, Bouwman J et al (2017) Observing transiting planets with JWST. Prime targets and their synthetic spectral observations. A&A 600:A10ADSCrossRefGoogle Scholar
  85. Moses JI, Line MR, Visscher C et al (2013a) Compositional diversity in the atmospheres of hot neptunes, with application to GJ 436b. ApJ 777:34ADSCrossRefGoogle Scholar
  86. Moses JI, Madhusudhan N, Visscher C, Freedman RS (2013b) Chemical Consequences of the C/O Ratio on Hot Jupiters: examples from WASP-12b, CoRoT-2b, XO-1b, and HD 189733b. ApJ 763:25ADSCrossRefGoogle Scholar
  87. Oreshenko M, Lavie B, Grimm SL et al (2017) Retrieval analysis of the emission spectrum of WASP-12b: sensitivity of outcomes to prior assumptions and implications for formation history. ApJ 847:L3ADSCrossRefGoogle Scholar
  88. Pinhas A, Madhusudhan N (2017) On signatures of clouds in exoplanetary transit spectra. ArXiv e-printsADSCrossRefGoogle Scholar
  89. Pont F, Knutson H, Gilliland RL, Moutou C, Charbonneau D (2008) Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μm transmission spectrum of HD 189733b with the HubbleSpaceTelescope. MNRAS 385:109–118ADSCrossRefGoogle Scholar
  90. Pont F, Sing DK, Gibson NP et al (2013) The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations. MNRAS 432:2917–2944ADSCrossRefGoogle Scholar
  91. Robinson TD (2017) A theory of exoplanet transits with light scattering. ApJ 836:236ADSCrossRefGoogle Scholar
  92. Rodgers CD (2000) Inverse methods for atmospheric sounding – theory and practice. Series on atmospheric oceanic and planetary physics, vol 2. World Scientific Publishing Co Pte Ltd., Edited by Clive D Rodgers. ISBN: 9789812813718Google Scholar
  93. Seager S (2010) Exoplanet atmospheres: physical processes. Princeton University Press, PrincetonGoogle Scholar
  94. Seager S, Sasselov DD (2000) Theoretical transmission spectra during extrasolar giant planet transits. ApJ 537:916–921ADSCrossRefGoogle Scholar
  95. Sedaghati E, Boffin HMJ, MacDonald RJ et al (2017) Detection of titanium oxide in the atmosphere of a hot Jupiter. Nature 549:238–241ADSCrossRefGoogle Scholar
  96. Shaw JR, Bridges M, Hobson MP (2007) Efficient Bayesian inference for multimodal problems in cosmology. MNRAS 378:1365–1370ADSCrossRefGoogle Scholar
  97. Sheppard KB, Mandell AM, Tamburo P et al (2017) Evidence for a dayside thermal inversion and high metallicity for the hot Jupiter WASP-18b. ApJ 850:L32ADSCrossRefGoogle Scholar
  98. Sing DK, Fortney JJ, Nikolov N et al (2016) A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 529:59–62ADSCrossRefGoogle Scholar
  99. Skilling J (2006) Nested sampling for general Bayesian computation. Bayesian Anal 1(4):833–859. Scholar
  100. Snellen IAG, de Kok RJ, de Mooij EJW, Albrecht S (2010) The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 465:1049–1051ADSCrossRefGoogle Scholar
  101. Sromovsky LA, Fry PM, Kim JH (2011) Methane on Uranus: The case for a compact CH 4 cloud layer at low latitudes and a severe CH 4 depletion at high-latitudes based on re-analysis of Voyager occultation measurements and STIS spectroscopy. Icarus 215:292–312ADSCrossRefGoogle Scholar
  102. Stevenson KB, Harrington J, Nymeyer S et al (2010) Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b. Nature 464:1161–1164ADSCrossRefGoogle Scholar
  103. Stevenson KB, Bean JL, Madhusudhan N, Harrington J (2014a) Deciphering the atmospheric composition of WASP-12b: a comprehensive analysis of its dayside emission. ApJ 791:36ADSCrossRefGoogle Scholar
  104. Stevenson KB, Désert JM, Line MR et al (2014b) Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy. Science 346:838–841ADSCrossRefGoogle Scholar
  105. Swain MR, Vasisht G, Tinetti G (2008) The presence of methane in the atmosphere of an extrasolar planet. Nature 452:329–331ADSCrossRefGoogle Scholar
  106. Tegmark M, Strauss MA, Blanton MR et al (2004) Cosmological parameters from SDSS and WMAP. Phys Rev D 69(10):103501Google Scholar
  107. Tegmark M, Eisenstein DJ, Strauss MA et al (2006) Cosmological constraints from the SDSS luminous red galaxies. Phys Rev D 74(12):123507Google Scholar
  108. Tinetti G, Vidal-Madjar A, Liang MC et al (2007) Water vapour in the atmosphere of a transiting extrasolar planet. Nature 448:169–171ADSCrossRefGoogle Scholar
  109. Todorov KO, Line MR, Pineda JE et al (2016) The water abundance of the directly imaged substellar companion κ and b retrieved from a near infrared spectrum. ApJ 823:14ADSCrossRefGoogle Scholar
  110. Trotta R (2017) Bayesian methods in cosmology. ArXiv e-printsGoogle Scholar
  111. Wakeford HR, Sing DK (2015) Transmission spectral properties of clouds for hot Jupiter exoplanets. A&A 573:A122ADSCrossRefGoogle Scholar
  112. Wakeford HR, Sing DK, Kataria T et al (2017) HAT-P-26b: a Neptune-mass exoplanet with a well-constrained heavy element abundance. Science 356:628–631ADSCrossRefGoogle Scholar
  113. Wakeford HR, Sing DK, Deming D et al (2018) The complete transmission spectrum of WASP-39b with a precise water constraint. AJ 155:29ADSCrossRefGoogle Scholar
  114. Waldmann IP (2016) Dreaming of atmospheres. ApJ 820:107ADSCrossRefGoogle Scholar
  115. Waldmann IP, Rocchetto M, Tinetti G et al (2015a) Tau-REx II: retrieval of emission spectra. ApJ 813:13ADSCrossRefGoogle Scholar
  116. Waldmann IP, Tinetti G, Rocchetto M et al (2015b) Tau-REx I: a next generation retrieval code for exoplanetary atmospheres. ApJ 802:107ADSCrossRefGoogle Scholar
  117. Wong MH, Mahaffy PR, Atreya SK, Niemann HB, Owen TC (2004) Updated Galileo probe mass Spectrometer measurements of Carbon, Oxygen, Nitrogen, and Sulfur on Jupiter. Icarus 171:153–170ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of AstronomyUniversity of CambridgeCambridgeUK

Section editors and affiliations

  • Sara Seager
    • 1
  1. 1.Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations