Skip to main content

Exoplanet Atmosphere Measurements from Transmission Spectroscopy and Other Planet Star Combined Light Observations

  • Living reference work entry
  • First Online:

Abstract

It is possible to learn a great deal about exoplanet atmospheres even when we cannot spatially resolve the planets from their host stars. In this chapter, we overview the basic techniques used to characterize transiting exoplanets – transmission spectroscopy, emission and reflection spectroscopy, and full-orbit phase curve observations. We discuss practical considerations, including current and future observing facilities and best practices for measuring precise spectra. We also highlight major observational results on the chemistry, climate, and cloud properties of exoplanets.

This is a preview of subscription content, log in via an institution.

References

  • Ali-Dib M (2016) Disentangling Hot Jupiters formation location from their chemical composition. ArXiv e-prints

    Google Scholar 

  • Anders E Grevesse N (1989) Abundances of the elements – meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    Article  ADS  Google Scholar 

  • Angerhausen D, DeLarme E, Morse JA (2015) A comprehensive study of Kepler phase curves and secondary eclipses: temperatures and albedos of confirmed Kepler giant planets. PASP 127:1113

    Article  ADS  Google Scholar 

  • Barstow JK, Aigrain S, Irwin PGJ, Sing DK (2017) A consistent retrieval analysis of 10 hot Jupiters observed in transmission. ApJ 834:50

    Article  ADS  Google Scholar 

  • Bean JL, Miller-Ricci Kempton E, Homeier D (2010) A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b. Nature 468:669–672

    Article  ADS  Google Scholar 

  • Bean JL, Désert JM, Seifahrt A et al (2013) Ground-based transit spectroscopy of the hot-Jupiter WASP-19b in the near-infrared. ApJ 771:108

    Article  ADS  Google Scholar 

  • Beatty TG, Madhusudhan N, Pogge R et al (2016) The broadband and spectrally-resolved H-band eclipse of KELT-1b and the role of surface gravity in stratospheric inversions in hot Jupiters. ArXiv e-prints

    Google Scholar 

  • Benneke B (2015) Strict upper limits on the carbon-to-oxygen ratios of eight hot Jupiters from self-consistent atmospheric retrieval. ArXiv e-prints

    Google Scholar 

  • Benneke B, Seager S (2012) Atmospheric retrieval for super-earths: uniquely constraining the atmospheric composition with transmission spectroscopy. ApJ 753:100

    Article  ADS  Google Scholar 

  • Birkby JL, de Kok RJ, Brogi M et al (2013) Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 μm. MNRAS 436:L35–L39

    Article  ADS  Google Scholar 

  • Brogi M, de Kok RJ, Birkby JL, Schwarz H, Snellen IAG (2014) Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b. A&A 565:A124

    Article  ADS  Google Scholar 

  • Burrows A, Sharp CM (1999) Chemical equilibrium abundances in brown dwarf and extrasolar giant planet atmospheres. ApJ 512:843–863

    Article  ADS  Google Scholar 

  • Chapman JW, Zellem RT, Line MR et al (2017) Quantifying the impact of spectral coverage on the retrieval of molecular abundances from exoplanet transmission spectra. ArXiv e-prints

    Google Scholar 

  • Charbonneau D, Brown TM, Noyes RW, Gilliland RL (2002) Detection of an extrasolar planet atmosphere. ApJ 568:377–384

    Article  ADS  Google Scholar 

  • Crossfield IJM (2015) Observations of exoplanet atmospheres. PASP 127:941

    Article  ADS  Google Scholar 

  • Crossfield IJM, Barman T, Hansen BMS, Howard AW (2013) Warm ice giant GJ 3470b. I. A flat transmission spectrum indicates a hazy, low-methane, and/or metal-rich atmosphere. A&A 559:A33

    Google Scholar 

  • Cushing MC, Roellig TL, Marley MS et al (2006) A Spitzer infrared spectrograph spectral sequence of M, L, and T dwarfs. ApJ 648:614–628

    Article  ADS  Google Scholar 

  • de Kok RJ, Brogi M, Snellen IAG et al (2013) Detection of carbon monoxide in the high-resolution day-side spectrum of the exoplanet HD 189733b. A&A 554:A82

    Article  ADS  Google Scholar 

  • de Wit J, Gillon M, Demory BO, Seager S (2012) Towards consistent mapping of distant worlds: secondary-eclipse scanning of the exoplanet HD 189733b. A&A 548:A128

    Article  ADS  Google Scholar 

  • Deming D, Seager S (2017) Illusion and reality in the atmospheres of exoplanets. ArXiv e-prints

    Google Scholar 

  • Deming D, Wilkins A, McCullough P et al (2013) Infrared transmission spectroscopy of the exoplanets HD 209458b and XO-1b using the wide field camera-3 on the hubble space telescope. ApJ 774:95

    Article  ADS  Google Scholar 

  • Deming D, Knutson H, Kammer J et al (2015) Spitzer secondary eclipses of the dense, modestly-irradiated, giant exoplanet HAT-P-20b using pixel-level decorrelation. ApJ 805:132

    Article  ADS  Google Scholar 

  • Demory BO, de Wit J, Lewis N et al (2013) Inference of inhomogeneous clouds in an exoplanet atmosphere. ApJ 776:L25

    Article  ADS  Google Scholar 

  • Demory BO, Gillon M, de Wit J et al (2016) A map of the large day-night temperature gradient of a super-earth exoplanet. Nature 532:207–209

    Article  ADS  Google Scholar 

  • Désert JM, Lecavelier des Etangs A, Hébrard G et al (2009) Search for carbon monoxide in the atmosphere of the transiting exoplanet HD 189733b. ApJ 699:478–485

    Google Scholar 

  • Diamond-Lowe H, Stevenson KB, Bean JL, Line MR, Fortney JJ (2014) New analysis indicates no thermal inversion in the atmosphere of HD 209458b. ApJ 796:66

    Article  ADS  Google Scholar 

  • Dittmann JA, Irwin JM, Charbonneau D et al (2017) A temperate rocky super-Earth transiting a nearby cool star. Nature 544:333–336

    Article  ADS  Google Scholar 

  • Dragomir D, Benneke B, Pearson KA et al (2015) Rayleigh scattering in the atmosphere of the warm Exo-Neptune GJ 3470b. ApJ 814:102

    Article  ADS  Google Scholar 

  • Dressing CD, Charbonneau D (2015) The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and an empirical measurement of the detection sensitivity. ApJ 807:45

    Article  ADS  Google Scholar 

  • Ehrenreich D, Bourrier V, Wheatley PJ et al (2015) A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b. Nature 522:459–461

    Article  ADS  Google Scholar 

  • Espinoza N, Fortney JJ, Miguel Y, Thorngren D, Murray-Clay R (2017) Metal enrichment leads to low atmospheric C/O ratios in transiting giant exoplanets. ApJ 838:L9

    Article  ADS  Google Scholar 

  • Evans TM, Sing DK, Wakeford HR et al (2016) Detection of H2O and evidence for TiO/VO in an ultra-hot exoplanet atmosphere. ApJ 822:L4

    Article  ADS  Google Scholar 

  • Fortney JJ (2005) The effect of condensates on the characterization of transiting planet atmospheres with transmission spectroscopy. MNRAS 364:649–653

    Article  ADS  Google Scholar 

  • Fortney JJ, Lodders K, Marley MS, Freedman RS (2008) A unified theory for the atmospheres of the Hot and very hot Jupiters: two classes of irradiated atmospheres. ApJ 678:1419–1435

    Article  ADS  Google Scholar 

  • Fortney JJ, Mordasini C, Nettelmann N et al (2013) A framework for characterizing the atmospheres of low-mass low-density transiting planets. ApJ 775:80

    Article  ADS  Google Scholar 

  • Fraine J, Deming D, Benneke B et al (2014) Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet. Nature 513:526–529

    Article  ADS  Google Scholar 

  • Gibson NP, Pont F, Aigrain S (2011) A new look at NICMOS transmission spectroscopy of HD 189733, GJ-436 and XO-1: no conclusive evidence for molecular features. MNRAS 411:2199–2213

    Article  ADS  Google Scholar 

  • Gillon M, Triaud AHMJ, Demory BO et al (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. ArXiv e-prints

    Google Scholar 

  • Greene TP, Line MR, Montero C et al (2016) Characterizing transiting exoplanet atmospheres with JWST. ApJ 817:17

    Article  ADS  Google Scholar 

  • Griffith CA, Turner JD, Zellem R, Tinetti G, Teske J (2013) Interpreting low spectral resolution data of transiting exoplanets. European planetary science congress 2013, held 8–13 Sept, London. Online at: http://meetings.copernicus.org/epsc2013, idEPSC2013-883 8:EPSC2013-883

  • Haynes K, Mandell AM, Madhusudhan N, Deming D, Knutson H (2015) Spectroscopic evidence for a temperature inversion in the dayside atmosphere of hot Jupiter WASP-33b. ApJ 806:146

    Article  ADS  Google Scholar 

  • Heng K (2016) A cloudiness index for transiting exoplanets based on the sodium and potassium lines: tentative evidence for hotter atmospheres being less cloudy at visible wavelengths. ApJ 826:L16

    Article  ADS  Google Scholar 

  • Huitson CM, Sing DK, Pont F et al (2013) An HST optical-to-near-IR transmission spectrum of the hot Jupiter WASP-19b: detection of atmospheric water and likely absence of TiO. MNRAS 434:3252–3274

    Article  ADS  Google Scholar 

  • Ingalls JG, Krick JE, Carey SJ et al (2016) Repeatability and accuracy of exoplanet eclipse depths measured with post-cryogenic Spitzer. AJ 152:44

    Article  ADS  Google Scholar 

  • Jordán A, Espinoza N, Rabus M et al (2013) A ground-based optical transmission spectrum of WASP-6b. ApJ 778:184

    Article  ADS  Google Scholar 

  • Kammer JA, Knutson HA, Line MR et al (2015) Spitzer secondary eclipse observations of five cool gas giant planets and empirical trends in cool planet emission spectra. ApJ 810:118

    Article  ADS  Google Scholar 

  • Kipping DM, Tinetti G (2010) Nightside pollution of exoplanet transit depths. MNRAS 407:2589–2598

    Article  ADS  Google Scholar 

  • Knutson HA, Charbonneau D, Allen LE et al (2007) A map of the day-night contrast of the extrasolar planet HD 189733b. Nature 447:183–186

    Article  ADS  Google Scholar 

  • Knutson HA, Charbonneau D, Allen LE, Burrows A, Megeath ST (2008) The 3.6–8.0 μm broadband emission spectrum of HD 209458b: evidence for an atmospheric temperature inversion. ApJ 673:526–531

    Article  ADS  Google Scholar 

  • Knutson HA, Benneke B, Deming D, Homeier D (2014) A featureless transmission spectrum for the Neptune-mass exoplanet GJ436b. Nature 505:66–68

    Article  ADS  Google Scholar 

  • Kreidberg L, Bean JL, Désert JM et al (2014a) Clouds in the atmosphere of the super-Earth exoplanet GJ1214b. Nature 505:69–72

    Article  ADS  Google Scholar 

  • Kreidberg L, Bean JL, Désert JM et al (2014b) A precise water abundance measurement for the hot Jupiter WASP-43b. ApJ 793:L27

    Article  ADS  Google Scholar 

  • Kreidberg L, Line MR, Bean JL et al (2015) A detection of water in the transmission spectrum of the hot Jupiter WASP-12b and implications for its atmospheric composition. ApJ 814:66

    Article  ADS  Google Scholar 

  • Lecavelier Des Etangs A, Pont F, Vidal-Madjar A, Sing D (2008a) Rayleigh scattering in the transit spectrum of HD 189733b. A&A 481:L83–L86

    Article  ADS  Google Scholar 

  • Lecavelier Des Etangs A, Vidal-Madjar A, Désert JM, Sing D (2008b) Rayleigh scattering by H2 in the extrasolar planet HD 209458b. A&A 485:865–869

    Article  ADS  Google Scholar 

  • Line MR, Knutson H, Wolf AS, Yung YL (2014) A systematic retrieval analysis of secondary eclipse spectra. II. A uniform analysis of nine planets and their C to O ratios. ApJ 783:70

    Google Scholar 

  • Line MR, Stevenson KB, Bean J et al (2016) No thermal inversion and a solar water abundance for the hot Jupiter HD 209458b from HST/WFC3 spectroscopy. AJ 152:203

    Article  ADS  Google Scholar 

  • Madhusudhan N (2012) C/O ratio as a dimension for characterizing exoplanetary atmospheres. ApJ 758:36

    Article  ADS  Google Scholar 

  • Madhusudhan N, Burrows A (2012) Analytic models for albedos, phase curves, and polarization of reflected light from exoplanets. ApJ 747:25

    Article  ADS  Google Scholar 

  • Madhusudhan N, Harrington J, Stevenson KB et al (2011) A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b. Nature 469:64–67

    Article  ADS  Google Scholar 

  • Madhusudhan N, Amin MA, Kennedy GM (2014) Toward chemical constraints on hot Jupiter migration. ApJ 794:L12

    Article  ADS  Google Scholar 

  • McCullough PR, Crouzet N, Deming D, Madhusudhan N (2014) Water vapor in the spectrum of the extrasolar planet HD 189733b. I. The transit. ApJ 791:55

    Google Scholar 

  • Miller-Ricci Kempton E, Zahnle K, Fortney JJ (2012) The atmospheric chemistry of GJ 1214b: photochemistry and clouds. ApJ 745:3

    Article  ADS  Google Scholar 

  • Mordasini C, van Boekel R, Mollière P, Henning T, Benneke B (2016) The imprint of exoplanet formation history on observable present-day spectra of hot Jupiters. ApJ 832:41

    Article  ADS  Google Scholar 

  • Morello G, Waldmann IP, Tinetti G et al (2015) Revisiting Spitzer transit observations with independent component analysis: new results for the GJ 436 system. ApJ 802:117

    Article  ADS  Google Scholar 

  • Morley CV, Fortney JJ, Kempton EMR et al (2013) Quantitatively assessing the role of clouds in the transmission spectrum of GJ 1214b. ApJ 775:33

    Article  ADS  Google Scholar 

  • Morley CV, Fortney JJ, Marley MS et al (2015) Thermal emission and reflected light spectra of super earths with flat transmission spectra. ApJ 815:110

    Article  ADS  Google Scholar 

  • Morley CV, Knutson H, Line M et al (2017a) Forward and inverse modeling of the emission and transmission spectrum of GJ 436b: investigating metal enrichment, tidal heating, and clouds. AJ 153:86

    Article  ADS  Google Scholar 

  • Morley CV, Kreidberg L, Rustamkulov Z, Robinson T, Fortney JJ (2017b) Observing the atmospheres of known temperate earth-sized planets with JWST. ArXiv e-prints

    Google Scholar 

  • Moses JI, Madhusudhan N, Visscher C, Freedman RS (2013) Chemical consequences of the C/O ratio on hot Jupiters: examples from WASP-12b, CoRoT-2b, XO-1b, and HD 189733b. ApJ 763:25

    Article  ADS  Google Scholar 

  • Mousis O, Fletcher LN, Lebreton JP et al (2014) Scientific rationale for Saturn’s in situ exploration. Planet Space Sci 104:29–47

    Article  ADS  Google Scholar 

  • Nikolov N, Sing DK, Pont F et al (2014) Hubble space telescope hot Jupiter transmission spectral survey: a detection of Na and strong optical absorption in HAT-P-1b. MNRAS 437:46–66

    Article  ADS  Google Scholar 

  • Öberg KI, Murray-Clay R, Bergin EA (2011) The effects of snowlines on C/O in planetary atmospheres. ApJ 743:L16

    Article  ADS  Google Scholar 

  • Oreshenko M, Heng K, Demory BO (2016) Optical phase curves as diagnostics for aerosol composition in exoplanetary atmospheres. MNRAS 457:3420–3429

    Article  ADS  Google Scholar 

  • Parmentier V, Showman AP, Lian Y (2013) 3D mixing in hot Jupiters atmospheres. I. Application to the day/night cold trap in HD 209458b. A&A 558:A91

    Google Scholar 

  • Parmentier V, Fortney JJ, Showman AP, Morley C, Marley MS (2016) Transitions in the cloud composition of hot Jupiters. ApJ 828:22

    Article  ADS  Google Scholar 

  • Pont F, Knutson H, Gilliland RL, Moutou C, Charbonneau D (2008) Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μm transmission spectrum of HD 189733b with the HubbleSpaceTelescope. MNRAS 385:109–118

    Article  ADS  Google Scholar 

  • Raghavan D, McAlister HA, Henry TJ et al (2010) A survey of stellar families: multiplicity of solar-type stars. ApJS 190:1–42

    Article  ADS  Google Scholar 

  • Rauscher E, Menou K, Seager S et al (2007) Toward eclipse mapping of hot Jupiters. ApJ 664:1199–1209

    Article  ADS  Google Scholar 

  • Ricker GR, Winn JN, Vanderspek R et al (2014) Transiting exoplanet survey satellite (TESS). In: Space telescopes and instrumentation 2014: optical, infrared, and millimeter wave. Proceedings of SPIE, vol 9143. SPIE, Bellingham, p 914320. http://doi.org/10.1117/12.2063489

    Google Scholar 

  • Robinson TD (2017) A theory of exoplanet transits with light scattering. ApJ 836:236

    Article  ADS  Google Scholar 

  • Robinson TD, Maltagliati L, Marley MS, Fortney JJ (2014) Titan solar occultation observations reveal transit spectra of a hazy world. Proc Natl Acad Sci 111:9042–9047

    Article  ADS  Google Scholar 

  • Schwartz JC, Cowan NB (2015) Balancing the energy budget of short-period giant planets: evidence for reflective clouds and optical absorbers. MNRAS 449:4192–4203

    Article  ADS  Google Scholar 

  • Schwarz H, Brogi M, de Kok R, Birkby J, Snellen I (2015) Evidence against a strong thermal inversion in HD 209458b from high-dispersion spectroscopy. A&A 576:A111

    Article  ADS  Google Scholar 

  • Seager S, Sasselov DD (2000) Theoretical transmission spectra during extrasolar giant planet transits. ApJ 537:916–921

    Article  ADS  Google Scholar 

  • Seager S, Whitney BA, Sasselov DD (2000) Photometric light curves and polarization of close-in extrasolar giant planets. ApJ 540:504–520

    Article  ADS  Google Scholar 

  • Showman AP, Ingersoll AP (1998) Interpretation of Galileo probe data and implications for Jupiter’s dry downdrafts. Icarus 132:205–220

    Article  ADS  Google Scholar 

  • Showman AP, Fortney JJ, Lian Y et al (2009) Atmospheric circulation of hot Jupiters: coupled radiative-dynamical general circulation model simulations of HD 189733b and HD 209458b. ApJ 699:564–584

    Article  ADS  Google Scholar 

  • Sing DK, Désert JM, Fortney JJ et al (2011a) Gran Telescopio Canarias OSIRIS transiting exoplanet atmospheric survey: detection of potassium in XO-2b from narrowband spectrophotometry. A&A 527:A73

    Article  ADS  Google Scholar 

  • Sing DK, Pont F, Aigrain S et al (2011b) Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high-altitude atmospheric haze in the optical and near-ultraviolet with STIS. MNRAS 416:1443–1455

    Article  ADS  Google Scholar 

  • Sing DK, Lecavelier des Etangs A, Fortney JJ et al (2013) HST hot-Jupiter transmission spectral survey: evidence for aerosols and lack of TiO in the atmosphere of WASP-12b. MNRAS 436:2956–2973

    Google Scholar 

  • Sing DK, Fortney JJ, Nikolov N et al (2016) A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 529:59–62

    Article  ADS  Google Scholar 

  • Smith RM, Zavodny M, Rahmer G, Bonati M (2008) A theory for image persistence in HgCdTe photodiodes. In: High energy, optical, and infrared detectors for astronomy III. Proceedings of SPIE, vol 7021. SPIE, Bellingham, p 70210J. http://doi.org/10.1117/12.789372

    Google Scholar 

  • Snellen IAG, de Kok RJ, de Mooij EJW, Albrecht S (2010) The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 465:1049–1051

    Article  ADS  Google Scholar 

  • Stevenson KB (2016) Quantifying and predicting the presence of clouds in exoplanet atmospheres. ApJ 817:L16

    Article  ADS  Google Scholar 

  • Stevenson KB, Harrington J, Nymeyer S et al (2010) Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b. Nature 464:1161–1164

    Article  ADS  Google Scholar 

  • Stevenson KB, Harrington J, Fortney JJ et al (2012) Transit and eclipse analyses of the exoplanet HD 149026b Using BLISS mapping. ApJ 754:136

    Article  ADS  Google Scholar 

  • Stevenson KB, Bean JL, Madhusudhan N, Harrington J (2014a) Deciphering the atmospheric composition of WASP-12b: a comprehensive analysis of its dayside emission. ApJ 791:36

    Article  ADS  Google Scholar 

  • Stevenson KB, Désert JM, Line MR et al (2014b) Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy. Science 346:838–841

    Article  ADS  Google Scholar 

  • Stevenson KB, Bean JL, Seifahrt A et al (2016) A search for water in the atmosphere of HAT-P-26b using LDSS-3C. ApJ 817:141

    Article  ADS  Google Scholar 

  • Stevenson KB, Line MR, Bean JL et al (2017) Spitzer phase curve constraints for WASP-43b at 3.6 and 4.5 μm. AJ 153:68

    Google Scholar 

  • Sullivan PW, Winn JN, Berta-Thompson ZK et al (2015) The transiting exoplanet survey satellite: simulations of planet detections and astrophysical false positives. ApJ 809:77

    Article  ADS  Google Scholar 

  • Swain MR, Vasisht G, Tinetti G (2008) The presence of methane in the atmosphere of an extrasolar planet. Nature 452:329–331

    Article  ADS  Google Scholar 

  • Tinetti G, Vidal-Madjar A, Liang MC et al (2007) Water vapour in the atmosphere of a transiting extrasolar planet. Nature 448:169–171

    Article  ADS  Google Scholar 

  • Turco RP, Hamill P, Toon OB, Whitten RC, Kiang CS (1979) A one-dimensional model describing aerosol formation and evolution in the stratosphere: I. Physical processes and mathematical analogs. J Atmos Sci 36:699–717

    Article  Google Scholar 

  • Vidal-Madjar A, Lecavelier des Etangs A, Désert JM et al (2003) An extended upper atmosphere around the extrasolar planet HD209458b. Nature 422:143–146

    Google Scholar 

  • Vidal-Madjar A, Désert JM, Lecavelier des Etangs A et al (2004) Detection of oxygen and carbon in the hydrodynamically escaping atmosphere of the extrasolar planet HD 209458b. ApJ 604:L69–L72

    Google Scholar 

  • Wakeford HR, Sing DK (2015) Transmission spectral properties of clouds for hot Jupiter exoplanets. A&A 573:A122

    Article  ADS  Google Scholar 

  • Wakeford HR, Visscher C, Lewis NK et al (2017) High-temperature condensate clouds in super-hot Jupiter atmospheres. MNRAS 464:4247–4254

    Article  ADS  Google Scholar 

  • Zhou Y, Apai D, Lew BWP, Schneider G (2017) A physical model-based correction for charge traps in the hubble space telescope’s wide field camera 3 near-IR detector and its applications to transiting exoplanets and brown dwarfs. AJ 153:243

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author acknowledges support from the Harvard Society of Fellows and the Harvard Astronomy Department Institute for Theory and Computation. She is grateful for helpful comments and figures from Caroline Morley, Hannah Diamond-Lowe, Tyler Robinson, and Sara Seager.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Kreidberg .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Kreidberg, L. (2018). Exoplanet Atmosphere Measurements from Transmission Spectroscopy and Other Planet Star Combined Light Observations. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_100-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_100-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics