Skip to main content

Androgen Receptor

  • Living reference work entry
  • First Online:
Endocrinology of the Testis and Male Reproduction

Part of the book series: Endocrinology ((ENDOCR))

  • 319 Accesses

Abstract

Androgen receptor (AR) belongs to the steroid hormone receptor family of the nuclear receptor superfamily and acts as a hormone-controlled transcription factor that conveys the messages of both natural and synthetic androgens to the genes and gene programs. The androgen-regulated genes have a central role in the development and maintenance of the male phenotype and reproductive physiology. AR gene resides on the X chromosome, and mutations in the gene lead to a wide array of androgen insensitivity disorders in males. AR-mediated gene regulation is a rigorously regulated process that involves a coordinated interaction of AR with other DNA sequence-specific transcription factors, such as pioneer factor forkhead box1 and coregulator proteins, including PIAS1. AR signaling starts in the cytosol where hormone binding releases the receptor from a chaperone complex, leading to receptor homodimerization and nuclear translocation and binding to androgen response elements in the regulatory regions of AR target genes. Classic models of AR action view the AR chromatin-binding sites as upstream regulatory elements in gene promoters, but recent genome-wide methods have revealed that the AR regulates transcription mostly from the distal chromatin-binding sites, enhancers. This highlights the importance of chromatin structure and long-range chromatin interactions in the regulation of transcription by AR. In addition to androgens, the AR activity is regulated by several posttranslational modifications, such as SUMOylation, which influence the chromatin binding, protein stability, and interaction of the receptor with other proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abate-Shen C, Shen MM. Molecular genetics of prostate cancer. Genes Dev. 2000;14:2410–34.

    Article  CAS  PubMed  Google Scholar 

  • Ahrens-Fath I, Politz O, Geserick C, Haendler B. Androgen receptor function is modulated by the tissue-specific AR45 variant. FEBS J. 2005;272:74–84.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee PP, Banerjee S, Brown TR. Increased androgen receptor expression correlates with development of age-dependent, lobe-specific spontaneous hyperplasia of the brown Norway rat prostate. Endocrinology. 2001;142:4066–75.

    Article  CAS  PubMed  Google Scholar 

  • Barth TK, Imhof A. Fast signals and slow marks: the dynamics of histone modifications. Trends Biochem Sci. 2010;35:618–26.

    Article  CAS  PubMed  Google Scholar 

  • Brock O, De Mees C, Bakker J. Hypothalamic expression of oestrogen receptor alpha and androgen receptor is sex-, age- and region-dependent in mice. J Neuroendocrinol. 2015;27:264–76.

    Article  CAS  PubMed  Google Scholar 

  • Burd CJ, Morey LM, Knudsen KE. Androgen receptor corepressors and prostate cancer. Endocr Relat Cancer. 2006;13:979–94.

    Article  CAS  PubMed  Google Scholar 

  • Burnstein KL. Regulation of androgen receptor levels: implications for prostate cancer progression and therapy. J Cell Biochem. 2005;95:657–69.

    Article  CAS  PubMed  Google Scholar 

  • Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, et al. Genome-wide analysis of estrogen receptor binding sites. Nat Genet. 2006;38:1289–97.

    Article  CAS  PubMed  Google Scholar 

  • Chabory E, Damon C, Lenoir A, Kauselmann G, Kern H, Zevnik B, Garrel C, Saez F, Cadet R, Henry-Berger J, et al. Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. J Clin Invest. 2009;119:2074–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zajac JD, MacLean HE. Androgen regulation of satellite cell function. J Endocrinol. 2005;186:21–31.

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Kesler CT, Paschal BM, Balk SP. Androgen receptor phosphorylation and activity are regulated by an association with protein phosphatase 1. J Biol Chem. 2009;284:25576–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chymkowitch P, Le May N, Charneau P, Compe E, Egly JM. The phosphorylation of the androgen receptor by TFIIH directs the ubiquitin/proteasome process. EMBO J. 2011;30:468–79.

    Article  CAS  PubMed  Google Scholar 

  • Coffey K, Robson CN. Regulation of the androgen receptor by post-translational modifications. J Endocrinol. 2012;215:221–37.

    Article  CAS  PubMed  Google Scholar 

  • Crocoll A, Zhu CC, Cato AC, Blum M. Expression of androgen receptor mRNA during mouse embryogenesis. Mech Dev. 1998;72:175–8.

    Article  CAS  PubMed  Google Scholar 

  • Daniel M, Dehm SM. Lessons from tissue compartment-specific analysis of androgen receptor alterations in prostate cancer. J Steroid Biochem Mol Biol. 2016. doi:10.1016/j.jsbmb.2016.04.016.

    PubMed  Google Scholar 

  • Davey RA, Grossmann M. Androgen receptor structure, function and biology: from bench to bedside. Clin Biochem Rev. 2016;37:3–15.

    PubMed  PubMed Central  Google Scholar 

  • Davis JN, Wojno KJ, Daignault S, Hofer MD, Kuefer R, Rubin MA, Day ML. Elevated E2F1 inhibits transcription of the androgen receptor in metastatic hormone-resistant prostate cancer. Cancer Res. 2006;66:11897–906.

    Article  CAS  PubMed  Google Scholar 

  • De Gendt K, Verhoeven G. Tissue- and cell-specific functions of the androgen receptor revealed through conditional knockout models in mice. Mol Cell Endocrinol. 2012;352:13–25.

    Article  CAS  PubMed  Google Scholar 

  • De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, Muller H, Ragoussis J, Wei CL, Natoli G. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol. 2010;8:e1000384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denayer S, Helsen C, Thorrez L, Haelens A, Claessens F. The rules of DNA recognition by the androgen receptor. Mol Endocrinol. 2010;24:898–913.

    Article  CAS  PubMed  Google Scholar 

  • Dubois V, Laurent MR, Sinnesael M, Cielen N, Helsen C, Clinckemalie L, Spans L, Gayan-Ramirez G, Deldicque L, Hespel P, et al. A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle. FASEB J. 2014;28:2979–94.

    Article  CAS  PubMed  Google Scholar 

  • Echeverria PC, Picard D. Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochim Biophys Acta. 2010;1803:641–9.

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein JS, Lee H, Burnett-Bowie SA, Pallais JC, Yu EW, Borges LF, Jones BF, Barry CV, Wulczyn KE, Thomas BJ, Leder BZ. Gonadal steroids and body composition, strength, and sexual function in men. N Engl J Med. 2013;369:1011–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foradori CD, Weiser MJ, Handa RJ. Non-genomic actions of androgens. Front Neuroendocrinol. 2008;29:169–81.

    Article  CAS  PubMed  Google Scholar 

  • Fullgrabe J, Kavanagh E, Joseph B. Histone onco-modifications. Oncogene. 2011;30:3391–403.

    Article  CAS  PubMed  Google Scholar 

  • Gao N, Zhang J, Rao MA, Case TC, Mirosevich J, Wang Y, Jin R, Gupta A, Rennie PS, Matusik RJ. The role of hepatocyte nuclear factor-3 alpha (Forkhead Box A1) and androgen receptor in transcriptional regulation of prostatic genes. Mol Endocrinol. 2003;17:1484–507.

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Bohl CE, Dalton JT. Chemistry and structural biology of androgen receptor. Chem Rev. 2005;105:3352–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentile MA, Nantermet PV, Vogel RL, Phillips R, Holder D, Hodor P, Cheng C, Dai H, Freedman LP, Ray WJ. Androgen-mediated improvement of body composition and muscle function involves a novel early transcriptional program including IGF1, mechano growth factor, and induction of {beta}-catenin. J Mol Endocrinol. 2010;44:55–73.

    Article  CAS  PubMed  Google Scholar 

  • Gioeli D, Paschal BM. Post-translational modification of the androgen receptor. Mol Cell Endocrinol. 2012;352:70–8.

    Article  CAS  PubMed  Google Scholar 

  • Gioeli D, Black BE, Gordon V, Spencer A, Kesler CT, Eblen ST, Paschal BM, Weber MJ. Stress kinase signaling regulates androgen receptor phosphorylation, transcription, and localization. Mol Endocrinol. 2006;20:503–15.

    Article  CAS  PubMed  Google Scholar 

  • Green SM, Mostaghel EA, Nelson PS. Androgen action and metabolism in prostate cancer. Mol Cell Endocrinol. 2012;360:3–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR, Baltimore Longitudinal Study of Aging. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab. 2001;86:724–31.

    Article  CAS  PubMed  Google Scholar 

  • Heemers HV, Tindall DJ. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev. 2007;28:778–808.

    Article  CAS  PubMed  Google Scholar 

  • Heinlein CA, Chang C. Androgen receptor (AR) coregulators: an overview. Endocr Rev. 2002;23:175–200.

    Article  CAS  PubMed  Google Scholar 

  • Helsen C, Kerkhofs S, Clinckemalie L, Spans L, Laurent M, Boonen S, Vanderschueren D, Claessens F. Structural basis for nuclear hormone receptor DNA binding. Mol Cell Endocrinol. 2012;348:411–7.

    Article  CAS  PubMed  Google Scholar 

  • Holtzinger A, Evans T. Gata4 regulates the formation of multiple organs. Development. 2005;132:4005–14.

    Article  CAS  PubMed  Google Scholar 

  • Hsu CL, Chen YL, Ting HJ, Lin WJ, Yang Z, Zhang Y, Wang L, Wu CT, Chang HC, Yeh S, Pimplikar SW, Chang C. Androgen receptor (AR) NH2- and COOH-terminal interactions result in the differential influences on the AR-mediated transactivation and cell growth. Mol Endocrinol. 2005;19:350–61.

    Article  CAS  PubMed  Google Scholar 

  • Hu YC, Wang PH, Yeh S, Wang RS, Xie C, Xu Q, Zhou X, Chao HT, Tsai MY, Chang C. Subfertility and defective folliculogenesis in female mice lacking androgen receptor. Proc Natl Acad Sci USA. 2004;101:11209–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, MacLean JA, Bhardwaj A, Wilkinson MF. Regulation and function of the Rhox5 homeobox gene. Ann N Y Acad Sci. 2007;1120:72–83.

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Yao G, Guan X, Ni Z, Ma W, Wilson EM, French FS, Liu Q, Zhang Y. Research resource: genome-wide mapping of in vivo androgen receptor binding sites in mouse epididymis. Mol Endocrinol. 2010;24:2392–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu SG, Zou M, Yao GX, Ma WB, Zhu QL, Li XQ, Chen ZJ, Sun Y. Androgenic regulation of beta-defensins in the mouse epididymis. Reprod Biol Endocrinol. 2014;12:76. doi:10.1186/1477-7827-12-76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang P, Chandra V, Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol. 2010;72:247–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurtado A, Holmes KA, Ross-Innes CS, Schmidt D, Carroll JS. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet. 2011;43:27–33.

    Article  CAS  PubMed  Google Scholar 

  • Ikonen T, Palvimo JJ, Kallio PJ, Reinikainen P, Jänne OA. Stimulation of androgen-regulated transactivation by modulators of protein phosphorylation. Endocrinology. 1994;135:1359–66.

    CAS  PubMed  Google Scholar 

  • Jääskeläinen J. Molecular biology of androgen insensitivity. Mol Cell Endocrinol. 2012;352:4–12.

    Article  PubMed  CAS  Google Scholar 

  • Jakob M, Kolodziejczyk R, Orlowski M, Krzywda S, Kowalska A, Dutko-Gwozdz J, Gwozdz T, Kochman M, Jaskolski M, Ozyhar A. Novel DNA-binding element within the C-terminal extension of the nuclear receptor DNA-binding domain. Nucleic Acids Res. 2007;35:2705–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenster G, van der Korput HA, van Vroonhoven C, van der Kwast TH, Trapman J, Brinkmann AO. Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Mol Endocrinol. 1991;5:1396–404.

    Article  CAS  PubMed  Google Scholar 

  • Jin HJ, Zhao JC, Wu L, Kim J, Yu J. Cooperativity and equilibrium with FOXA1 define the androgen receptor transcriptional program. Nat Commun. 2014;5:3972.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kadi F, Bonnerud P, Eriksson A, Thornell LE. The expression of androgen receptors in human neck and limb muscles: effects of training and self-administration of androgenic-anabolic steroids. Histochem Cell Biol. 2000;113:25–9.

    Article  CAS  PubMed  Google Scholar 

  • Kaikkonen S, Jääskeläinen T, Karvonen U, Rytinki MM, Makkonen H, Gioeli D, Paschal BM, Palvimo JJ. SUMO-specific protease 1 (SENP1) reverses the hormone-augmented SUMOylation of androgen receptor and modulates gene responses in prostate cancer cells. Mol Endocrinol. 2009;23:292–307.

    Article  CAS  PubMed  Google Scholar 

  • Kaikkonen MU, Spann NJ, Heinz S, Romanoski CE, Allison KA, Stender JD, Chun HB, Tough DF, Prinjha RK, Benner C, Glass CK. Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol Cell. 2013a;51:310–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaikkonen S, Paakinaho V, Sutinen P, Levonen A, Palvimo JJ. Prostaglandin 15d-PGJ(2) Inhibits Androgen Receptor Signaling in Prostate Cancer Cells. Mol Endocrinol. 2013b;27:212–23.

    Article  CAS  PubMed  Google Scholar 

  • Kallio PJ, Poukka H, Moilanen A, Jänne OA, Palvimo JJ. Androgen receptor-mediated transcriptional regulation in the absence of direct interaction with a specific DNA element. Mol Endocrinol. 1995;9:1017–28.

    CAS  PubMed  Google Scholar 

  • Knutson TP, Daniel AR, Fan D, Silverstein KA, Covington KR, Fuqua SA, Lange CA. Phosphorylated and sumoylation-deficient progesterone receptors drive proliferative gene signatures during breast cancer progression. Breast Cancer Res. 2012;14:R95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko S, Ahn J, Song CS, Kim S, Knapczyk-Stwora K, Chatterjee B. Lysine methylation and functional modulation of androgen receptor by Set9 methyltransferase. Mol Endocrinol. 2011;25:433–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koryakina Y, Ta HQ, Gioeli D. Androgen receptor phosphorylation: biological context and functional consequences. Endocr Relat Cancer. 2014;21:T131–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotaja N, Aittomäki S, Silvennoinen O, Palvimo JJ, Jänne OA. ARIP3 (androgen receptor-interacting protein 3) and other PIAS (protein inhibitor of activated STAT) proteins differ in their ability to modulate steroid receptor-dependent transcriptional activation. Mol Endocrinol. 2000;14:1986–2000.

    Article  CAS  PubMed  Google Scholar 

  • La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature. 1991;352:77–9.

    Article  CAS  PubMed  Google Scholar 

  • Laganiere J, Deblois G, Lefebvre C, Bataille AR, Robert F, Giguere V. From the cover: location analysis of estrogen receptor alpha target promoters reveals that FOXA1 defines a domain of the estrogen response. Proc Natl Acad Sci USA. 2005;102:11651–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam MT, Li W, Rosenfeld MG, Glass CK. Enhancer RNAs and regulated transcriptional programs. Trends Biochem Sci. 2014;39:170–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamont KR, Tindall DJ. Androgen regulation of gene expression. Adv Cancer Res. 2010;107:137–62.

    Article  CAS  PubMed  Google Scholar 

  • Lavery DN, McEwan IJ. Functional characterization of the native NH2-terminal transactivation domain of the human androgen receptor: binding kinetics for interactions with TFIIF and SRC-1a. Biochemistry. 2008;47:3352–9.

    Article  CAS  PubMed  Google Scholar 

  • Lee DK, Chang C. Molecular communication between androgen receptor and general transcription machinery. J Steroid Biochem Mol Biol. 2003;84:41–9.

    Article  CAS  PubMed  Google Scholar 

  • Lee CS, Friedman JR, Fulmer JT, Kaestner KH. The initiation of liver development is dependent on Foxa transcription factors. Nature. 2005;435:944–7.

    Article  CAS  PubMed  Google Scholar 

  • Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell. 2007;128:707–19.

    Article  CAS  PubMed  Google Scholar 

  • Li W, Notani D, Ma Q, Tanasa B, Nunez E, Chen AY, Merkurjev D, Zhang J, Ohgi K, Song X, et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature. 2013;498:516–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao RS, Ma S, Miao L, Li R, Yin Y, Raj GV. Androgen receptor-mediated non-genomic regulation of prostate cancer cell proliferation. Transl Androl Urol. 2013;2:187–96.

    PubMed  PubMed Central  Google Scholar 

  • Lindqvist J, Imanishi SY, Torvaldson E, Malinen M, Remes M, Orn F, Palvimo JJ, Eriksson JE. Cyclin-dependent kinase 5 acts as a critical determinant of AKT-dependent proliferation and regulates differential gene expression by the androgen receptor in prostate cancer cells. Mol Biol Cell. 2015;26:1971–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Jenster G, Epner DE. Androgen induction of cyclin-dependent kinase inhibitor p21 gene: role of androgen receptor and transcription factor Sp1 complex. Mol Endocrinol. 2000;14:753–60.

    Article  CAS  PubMed  Google Scholar 

  • Lupien M, Eeckhoute J, Meyer CA, Wang Q, Zhang Y, Li W, Carroll JS, Liu XS, Brown M. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell. 2008;132:958–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacKrell JG, Yaden BC, Bullock H, Chen K, Shetler P, Bryant HU, Krishnan V. Molecular targets of androgen signaling that characterize skeletal muscle recovery and regeneration. Nucl Recept Signal. 2015;13:e005.

    PubMed  PubMed Central  Google Scholar 

  • Maclean 2nd JA, Chen MA, Wayne CM, Bruce SR, Rao M, Meistrich ML, Macleod C, Wilkinson MF. Rhox: a new homeobox gene cluster. Cell. 2005;120:369–82.

    Article  CAS  PubMed  Google Scholar 

  • Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM. The nuclear receptor superfamily: the second decade. Cell. 1995;83:835–9.

    Article  CAS  PubMed  Google Scholar 

  • Massie CE, Lynch A, Ramos-Montoya A, Boren J, Stark R, Fazli L, Warren A, Scott H, Madhu B, Sharma N, et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 2011;30:2719–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matias PM, Donner P, Coelho R, Thomaz M, Peixoto C, Macedo S, Otto N, Joschko S, Scholz P, Wegg A, et al. Structural evidence for ligand specificity in the binding domain of the human androgen receptor. Implications for pathogenic gene mutations. J Biol Chem. 2000;275:26164–71.

    Article  CAS  PubMed  Google Scholar 

  • McEwan IJ. Molecular mechanisms of androgen receptor-mediated gene regulation: structure-function analysis of the AF-1 domain. Endocr Relat Cancer. 2004;11:281–93.

    Article  CAS  PubMed  Google Scholar 

  • McLean CY, Reno PL, Pollen AA, Bassan AI, Capellini TD, Guenther C, Indjeian VB, Lim X, Menke DB, Schaar BT, et al. Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature. 2011;471:216–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munetomo A, Hojo Y, Higo S, Kato A, Yoshida K, Shirasawa T, Shimizu T, Barron A, Kimoto T, Kawato S. Aging-induced changes in sex-steroidogenic enzymes and sex-steroid receptors in the cortex, hypothalamus and cerebellum. J Physiol Sci. 2015;65:253–63.

    Article  CAS  PubMed  Google Scholar 

  • Palazzolo I, Gliozzi A, Rusmini P, Sau D, Crippa V, Simonini F, Onesto E, Bolzoni E, Poletti A. The role of the polyglutamine tract in androgen receptor. J Steroid Biochem Mol Biol. 2008;108:245–53.

    Article  CAS  PubMed  Google Scholar 

  • Palvimo JJ. The androgen receptor. Mol Cell Endocrinol. 2012;352:1–3.

    Article  CAS  PubMed  Google Scholar 

  • Palvimo JJ, Reinikainen P, Ikonen T, Kallio PJ, Moilanen A, Jänne OA. Mutual transcriptional interference between RelA and androgen receptor. J Biol Chem. 1996;271:24151–6.

    Article  CAS  PubMed  Google Scholar 

  • Pihlajamaa P, Sahu B, Lyly L, Aittomäki V, Hautaniemi S, Jänne OA. Tissue-specific pioneer factors associate with androgen receptor cistromes and transcription programs. EMBO J. 2014;33:312–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poukka H, Karvonen U, Jänne O, Palvimo J. Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci USA. 2000;97:14145–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prins GS, Putz O. Molecular signaling pathways that regulate prostate gland development. Differentiation. 2008;76:641–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puc J, Kozbial P, Li W, Tan Y, Liu Z, Suter T, Ohgi KA, Zhang J, Aggarwal AK, Rosenfeld MG. Ligand-dependent enhancer activation regulated by topoisomerase-I activity. Cell. 2015;160:367–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rana K, Lee NK, Zajac JD, MacLean HE. Expression of androgen receptor target genes in skeletal muscle. Asian J Androl. 2014;16:675–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts KP, Ensrud-Bowlin KM, Piehl LB, Parent KR, Bernhardt ML, Hamilton DW. Association of the protein D and protein E forms of rat CRISP1 with epididymal sperm. Biol Reprod. 2008;79:1046–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roche PJ, Hoare SA, Parker MG. A consensus DNA-binding site for the androgen receptor. Mol Endocrinol. 1992;6:2229–35.

    CAS  PubMed  Google Scholar 

  • Rouleau N, Domans’kyi A, Reeben M, Moilanen AM, Havas K, Kang Z, Owen-Hughes T, Palvimo JJ, Jänne OA. Novel ATPase of SNF2-like protein family interacts with androgen receptor and modulates androgen-dependent transcription. Mol Biol Cell. 2002;13:2106–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy AL, Singer DS. Core promoters in transcription: old problem, new insights. Trends Biochem Sci. 2015;40:165–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rytinki M, Kaikkonen S, Sutinen P, Paakinaho V, Rahkama V, Palvimo JJ. Dynamic SUMOylation Is Linked to the Activity Cycles of Androgen Receptor in the Cell Nucleus. Mol Cell Biol. 2012;32:4195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sack JS, Kish KF, Wang C, Attar RM, Kiefer SE, An Y, Wu GY, Scheffler JE, Salvati ME, Krystek Jr SR, Weinmann R, Einspahr HM. Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone. Proc Natl Acad Sci USA. 2001;98:4904–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu B, Laakso M, Ovaska K, Mirtti T, Lundin J, Rannikko A, Sankila A, Turunen JP, Lundin M, Konsti J, et al. Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. EMBO J. 2011;30:3962–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu B, Pihlajamaa P, Dubois V, Kerkhofs S, Claessens F, Jänne OA. Androgen receptor uses relaxed response element stringency for selective chromatin binding and transcriptional regulation in vivo. Nucleic Acids Res. 2014;42:4230–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampson N, Neuwirt H, Puhr M, Klocker H, Eder IE. In vitro model systems to study androgen receptor signaling in prostate cancer. Endocr Relat Cancer. 2013;20:R49–64.

    Article  CAS  PubMed  Google Scholar 

  • Schauwaers K, De Gendt K, Saunders PT, Atanassova N, Haelens A, Callewaert L, Moehren U, Swinnen JV, Verhoeven G, Verrijdt G, Claessens F. Loss of androgen receptor binding to selective androgen response elements causes a reproductive phenotype in a knockin mouse model. Proc Natl Acad Sci USA. 2007;104:4961–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sensibar JA. Analysis of cell death and cell proliferation in embryonic stages, normal adult, and aging prostates in human and animals. Microsc Res Tech. 1995;30:342–50.

    Article  CAS  PubMed  Google Scholar 

  • Serra C, Bhasin S, Tangherlini F, Barton ER, Ganno M, Zhang A, Shansky J, Vandenburgh HH, Travison TG, Jasuja R, Morris C. The role of GH and IGF-I in mediating anabolic effects of testosterone on androgen-responsive muscle. Endocrinology. 2011;152:193–206.

    Article  CAS  PubMed  Google Scholar 

  • Shaffer PL, Jivan A, Dollins DE, Claessens F, Gewirth DT. Structural basis of androgen receptor binding to selective androgen response elements. Proc Natl Acad Sci USA. 2004;101:4758–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang Y, Myers M, Brown M. Formation of the androgen receptor transcription complex. Mol Cell. 2002;9:601–10.

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Sun Z. 5’TG3’ interacting factor interacts with Sin3A and represses AR-mediated transcription. Mol Endocrinol. 2001;15:1918–28.

    CAS  PubMed  Google Scholar 

  • Sharma NL, Massie CE, Ramos-Montoya A, Zecchini V, Scott HE, Lamb AD, MacArthur S, Stark R, Warren AY, Mills IG, Neal DE. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. Cancer Cell. 2013;23:35–47.

    Article  CAS  PubMed  Google Scholar 

  • Shiota M, Yokomizo A, Naito S. Increased androgen receptor transcription: a cause of castration-resistant prostate cancer and a possible therapeutic target. J Mol Endocrinol. 2011;47:R25–41.

    Article  CAS  PubMed  Google Scholar 

  • Sinha-Hikim I, Taylor WE, Gonzalez-Cadavid NF, Zheng W, Bhasin S. Androgen receptor in human skeletal muscle and cultured muscle satellite cells: up-regulation by androgen treatment. J Clin Endocrinol Metab. 2004;89:5245–55.

    Article  CAS  PubMed  Google Scholar 

  • Sipilä P, Pujianto DA, Shariatmadari R, Nikkilä J, Lehtoranta M, Huhtaniemi IT, Poutanen M. Differential endocrine regulation of genes enriched in initial segment and distal caput of the mouse epididymis as revealed by genome-wide expression profiling. Biol Reprod. 2006;75:240–51.

    Article  PubMed  CAS  Google Scholar 

  • Sugimura Y, Cunha GR, Donjacour AA. Morphological and histological study of castration-induced degeneration and androgen-induced regeneration in the mouse prostate. Biol Reprod. 1986;34:973–83.

    Article  CAS  PubMed  Google Scholar 

  • Sutinen P, Malinen M, Heikkinen S, Palvimo JJ. SUMOylation modulates the transcriptional activity of androgen receptor in a target gene and pathway selective manner. Nucleic Acids Res. 2014a;42:8310–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutinen P, Rahkama V, Rytinki M, Palvimo JJ. The nuclear mobility and activity of FOXA1 with androgen receptor are regulated by SUMOylation. Mol Endocrinol. 2014b. doi:10.1210/me20141035.

    PubMed  Google Scholar 

  • Taatjes DJ. The human Mediator complex: a versatile, genome-wide regulator of transcription. Trends Biochem Sci. 2010;35:315–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson J, Saatcioglu F, Jänne OA, Palvimo JJ. Disrupted amino- and carboxyl-terminal interactions of the androgen receptor are linked to androgen insensitivity. Mol Endocrinol. 2001;15:923–35.

    Article  CAS  PubMed  Google Scholar 

  • Tian S, Poukka H, Palvimo JJ, Jänne OA. Small ubiquitin-related modifier-1 (SUMO-1) modification of the glucocorticoid receptor. Biochem J. 2002;367:907–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toropainen S, Malinen M, Kaikkonen S, Rytinki M, Jääskeläinen T, Sahu B, Jänne OA, Palvimo JJ. SUMO ligase PIAS1 functions as a target gene selective androgen receptor coregulator on prostate cancer cell chromatin. Nucleic Acids Res. 2015;43:848–61.

    Article  CAS  PubMed  Google Scholar 

  • Treuter E, Venteclef N. Transcriptional control of metabolic and inflammatory pathways by nuclear receptor SUMOylation. Biochim Biophys Acta. 2011;1812:909–18.

    Article  CAS  PubMed  Google Scholar 

  • Tsai HW, Taniguchi S, Samoza J, Ridder A. Age- and sex-dependent changes in androgen receptor expression in the developing mouse cortex and hippocampus. Neuroradiol J. 2015;2015:525369.

    Google Scholar 

  • Valdez CD, Davis JN, Odeh HM, Layfield TL, Cousineau CS, Berton TR, Johnson DG, Wojno KJ, Day ML. Repression of androgen receptor transcription through the E2F1/DNMT1 axis. PLoS One. 2011;6:e25187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Wijngaart DJ, Dubbink HJ, van Royen ME, Trapman J, Jenster G. Androgen receptor coregulators: recruitment via the coactivator binding groove. Mol Cell Endocrinol. 2012;352:57–69.

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven G, Willems A, Denolet E, Swinnen JV, De Gendt K. Androgens and spermatogenesis: lessons from transgenic mouse models. Philos Trans R Soc Lond Ser B Biol Sci. 2010;365:1537–56.

    Article  CAS  Google Scholar 

  • Walters KA. Role of androgens in normal and pathological ovarian function. Reproduction. 2015;149:R193–218.

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Carroll JS, Brown M. Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell. 2005;19:631–42.

    Article  CAS  PubMed  Google Scholar 

  • Wang RS, Yeh S, Chen LM, Lin HY, Zhang C, Ni J, Wu CC, di Sant’Agnese PA, deMesy-Bentley KL, Tzeng CR, Chang C. Androgen receptor in sertoli cell is essential for germ cell nursery and junctional complex formation in mouse testes. Endocrinology. 2006;147:5624–33.

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Li W, Liu XS, Carroll JS, Jänne OA, Keeton EK, Chinnaiyan AM, Pienta KJ, Brown M. A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell. 2007;27:380–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang C, Tian L, Popov VM, Pestell RG. Acetylation and nuclear receptor action. J Steroid Biochem Mol Biol. 2011;123:91–100.

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Gore AC. Changes in androgen receptor, estrogen receptor alpha, and sexual behavior with aging and testosterone in male rats. Horm Behav. 2010;58:306–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, Shimelis H, Linn DE, Jiang R, Yang X, Sun F, Guo Z, Chen H, Li W, Chen H, et al. Regulation of androgen receptor transcriptional activity and specificity by RNF6-induced ubiquitination. Cancer Cell. 2009;15:270–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav N, Heemers HV. Androgen action in the prostate gland. Minerva Urol Nefrol. 2012;64:35–49.

    CAS  PubMed  Google Scholar 

  • Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell. 2006;125:483–95.

    Article  CAS  PubMed  Google Scholar 

  • Yeh S, Tsai MY, Xu Q, Mu XM, Lardy H, Huang KE, Lin H, Yeh SD, Altuwaijri S, Zhou X, et al. Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proc Natl Acad Sci USA. 2002;99:13498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young WJ, Chang C. Ontogeny and autoregulation of androgen receptor mRNA expression in the nervous system. Endocrine. 1998;9:79–88.

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Gupta A, Wang Y, Suzuki K, Mirosevich J, Orgebin-Crist MC, Matusik RJ. Foxa1 and Foxa2 interact with the androgen receptor to regulate prostate and epididymal genes differentially. Ann N Y Acad Sci. 2005;1061:77–93.

    Article  CAS  PubMed  Google Scholar 

  • Zaret KS, Carroll JS. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 2011;25:2227–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarif JC, Miranti CK. The importance of non-nuclear AR signaling in prostate cancer progression and therapeutic resistance. Cell Signal. 2016;28:348–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X. Roles of androgen receptor in male and female reproduction: lessons from global and cell-specific androgen receptor knockout (ARKO) mice. J Androl. 2010;31:235–43.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work in J.J.P. laboratory is supported by the Academy of Finland, the Sigrid Jusélius Foundation and the Finnish Cancer Organisations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorma J. Palvimo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Sutinen, P., Malinen, M., Palvimo, J.J. (2016). Androgen Receptor. In: Simoni, M., Huhtaniemi, I. (eds) Endocrinology of the Testis and Male Reproduction. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-29456-8_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29456-8_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-29456-8

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics