Skip to main content

Testicular Steroidogenesis

  • Living reference work entry
  • First Online:
Endocrinology of the Testis and Male Reproduction

Part of the book series: Endocrinology ((ENDOCR))

Abstract

Testosterone is the major androgen in circulation in male humans, produced primarily in the Leydig cells of the testis. Biosynthesis of testosterone from cholesterol occurs via a series of enzymatic reactions. Testosterone may be further metabolized into a more potent androgen, dihydrotestosterone. In recent years an alternate pathway of dihydrotestosterone biosynthesis without using testosterone as a precursor has emerged. Majority of classically studied effects of androgens are thought to be mediated via nuclear receptor-dependent long-term transcriptional effects, but there also exist membrane receptor-based effects of androgens which are being uncovered from recent studies that may explain rapid effects of androgens in many cases. In this chapter we are describing the biosynthesis, mechanism of action, and therapeutic effects of testosterone and related androgens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Auchus RJ. The backdoor pathway to dihydrotestosterone. Trends Endoscrinol Metab. 2004;15:432–8.

    Article  CAS  Google Scholar 

  • Biason-Lauber A, Miller WL, et al. Of marsupials and men: "backdoor" dihydrotestosterone synthesis in male sexual differentiation. Mol Cell Endocrinol. 2013;371(1–2):124–32.

    Article  CAS  PubMed  Google Scholar 

  • Bongiovanni AM. The adrenogenital syndrome with deficiency of 3 beta-hydroxysteroid dehydrogenase. J Clin Invest. 1962;41:2086–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose HS, Sugawara T, et al. The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. N Engl J Med. 1996;335(25):1870–8.

    Article  CAS  PubMed  Google Scholar 

  • Burckhardt MA, Udhane S, et al. Human 3beta-hydroxysteroid-dehydrogenase deficiency seems to affect fertility but may not harbor a tumor risk: lesson from an experiment of nature. Eur J Endocrinol. 2015;173(5):K1–K12.

    Article  CAS  PubMed  Google Scholar 

  • Burkhard FZ, Parween S, et al. P450 oxidoreductase deficiency: analysis of mutations and polymorphisms. J Steroid Biochem Mol Biol. 2017;165(Pt A):38–50.

    Article  CAS  PubMed  Google Scholar 

  • Camats N, Pandey AV, et al. Ten novel mutations in the NR5A1 gene cause disordered sex development in 46,XY and ovarian insufficiency in 46,XX individuals. J Clin Endocrinol Metab. 2012;97(7):E1294–306.

    Article  CAS  PubMed  Google Scholar 

  • de Castro AL, Cavalari FC, et al. Epitestosterone and testosterone have similar nonclassical actions on membrane of Sertoli cells in whole seminiferous tubules. Horm Metab Res. 2013;45(01):15–21.

    PubMed  Google Scholar 

  • Cavalari FC, de Castro AL, et al. Non-classic androgen actions in JSertoli cell membrane in whole seminiferous tubules: effects of nandrolone decanoate and catechin. Steroids. 2012;77(1–2):118–25.

    Article  CAS  PubMed  Google Scholar 

  • Chang KH, Li R, et al. Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer. Proc Natl Acad Sci USA. 2011;108(33):13728–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi MH, Skipper PL, et al. Characterization of testosterone 11β-hydroxylation catalyzed by human liver microsomal cytochromes p450. Drug Metab Dispos. 2005;33(6):714–8.

    Article  CAS  PubMed  Google Scholar 

  • Davey RA, Grossmann M. Androgen receptor structure, function and biology: from bench to bedside. Clin Biochem Rev. 2016;37(1):3–15.

    PubMed  PubMed Central  Google Scholar 

  • Dhayat NA, Frey AC, et al. Estimation of reference curves for the urinary steroid metabolome in the first year of life in healthy children: tracing the complexity of human postnatal steroidogenesis. J Steroid Biochem Mol Biol. 2015;154:226–36.

    Article  CAS  PubMed  Google Scholar 

  • Dhayat NA, Dick B, et al. Androgen biosynthesis during minipuberty favors the backdoor pathway over the classic pathway: insights into enzyme activities and steroid fluxes in healthy infants during the first year of life from the urinary steroid metabolome. J Steroid Biochem Mol Biol. 2017;165:312–322.

    Google Scholar 

  • Duggal R, Liu Y, et al. Evidence that cytochrome b5 acts as a redox donor in CYP17A1 mediated androgen synthesis. Biochem Biophys Res Commun. 2016;477(2):202–8.

    Article  CAS  PubMed  Google Scholar 

  • Faisal Ahmed S, Iqbal A, et al. The testosterone:androstenedione ratio in male undermasculinization. Clin Endocrinol. 2000;53(6):697–702.

    Article  CAS  Google Scholar 

  • Fassnacht M, Schlenz N, et al. Beyond adrenal and ovarian androgen generation: increased peripheral 5 alpha-reductase activity in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88(6):2760–6.

    Article  CAS  PubMed  Google Scholar 

  • Fevold HR, Lorence MC, et al. Rat P450(17 alpha) from testis: characterization of a full-length cDNA encoding a unique steroid hydroxylase capable of catalyzing both delta 4- and delta 5-steroid-17,20-lyase reactions. Mol Endocrinol. 1989;3(6):968–75.

    Article  CAS  PubMed  Google Scholar 

  • Flück CE, Pandey AV. Impact on CYP19A1 activity by mutations in NADPH cytochrome P450 oxidoreductase. J Steroid Biochem Mol Biol. 2017;165(Pt A):64–70.

    Article  PubMed  Google Scholar 

  • Flück CE, Miller WL, et al. The 17, 20-lyase activity of cytochrome P450c17 from human fetal testis favors the Δ5 steroidogenic pathway. J Clin Endocrinol Metab. 2003;88(8):3762–6.

    Article  PubMed  Google Scholar 

  • Flück CE, Tajima T, et al. Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley-Bixler syndrome. Nat Genet. 2004;36(3):228–30.

    Article  PubMed  Google Scholar 

  • Flück CE, Meyer-Boni M, et al. Why boys will be boys: two pathways of fetal testicular androgen biosynthesis are needed for male sexual differentiation. Am J Hum Genet. 2011;89:201–18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Flück CE, Pandey AV, et al. Characterization of novel StAR (steroidogenic acute regulatory protein) mutations causing non-classic lipoid adrenal hyperplasia. PLoS One. 2011;6(5):e20178.

    Article  PubMed  PubMed Central  Google Scholar 

  • Foradori CD, Weiser MJ, et al. Non-genomic actions of androgens. Front Neuroendocrinol. 2008;29(2):169–81.

    Article  CAS  PubMed  Google Scholar 

  • Fukami M, Homma K, et al. Backdoor pathway for dihydrotestosterone biosynthesis: implications for normal and abnormal human sex development. Dev Dyn. 2013;242(4):320–9.

    Article  CAS  PubMed  Google Scholar 

  • Govindan MV. Specific region in hormone binding domain is essential for hormone binding and trans-activation by human androgen receptor. Mol Endocrinol. 1990;4(3):417–27.

    Article  CAS  PubMed  Google Scholar 

  • Hatzoglou A, Kampa M, et al. Membrane androgen receptor activation induces apoptotic regression of human prostate cancer cells in vitro and in vivo. J Clin Endocrinol Metab. 2005;90(2):893–903.

    Article  CAS  PubMed  Google Scholar 

  • Hershkovitz E, Parvari R, et al. Homozygous mutation G539R in the gene for P450 oxidoreductase in a family previously diagnosed as having 17,20-lyase deficiency. J Clin Endocrinol Metab. 2008;93(9):3584–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homma K, Hasegawa T, et al. Urine steroid hormone profile analysis in cytochrome P450 oxidoreductase deficiency: implication for the backdoor pathway to dihydrotestosterone. J Clin Endocrinol Metab. 2006;91(7):2643–9.

    Article  CAS  PubMed  Google Scholar 

  • Idkowiak J, Randell T, et al. A missense mutation in the human cytochrome b5 gene causes 46,XY disorder of sex development due to true isolated 17,20 lyase deficiency. J Clin Endocrinol Metab. 2012;97(3):E465–75.

    Article  CAS  PubMed  Google Scholar 

  • Ishii Y, Nurrochmad A, et al. Modulation of UDP-glucuronosyltransferase activity by endogenous compounds. Drug Metab Pharmacokinet. 2010;25(2):134–48.

    Article  CAS  PubMed  Google Scholar 

  • Ishii Y, Koba H, et al. Alteration of the function of the UDP-glucuronosyltransferase 1A subfamily by cytochrome P450 3A4: different susceptibility for UGT isoforms and UGT1A1/7 variants. Drug Metab Dispos. 2014;42(2):229–38.

    Article  CAS  PubMed  Google Scholar 

  • Kamrath C, Hochberg Z, et al. Increased activation of the alternative "backdoor" pathway in patients with 21-hydroxylase deficiency: evidence from urinary steroid hormone analysis. J Clin Endocrinol Metab. 2012;97(3):E367–75.

    Article  CAS  PubMed  Google Scholar 

  • Ko E, Choi H, et al. Testosterone stimulates Duox1 activity through GPRC6A in skin keratinocytes. J Biol Chem. 2014;289(42):28835–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuiri-Hanninen T, Sankilampi U, et al. Activation of the hypothalamic-pituitary-gonadal axis in infancy: minipuberty. Hormone research in paediatrics. 2014;82(2):73–80.

    Article  PubMed  Google Scholar 

  • Lieberherr M, Grosse B. Androgens increase intracellular calcium concentration and inositol 1,4,5-trisphosphate and diacylglycerol formation via a pertussis toxin-sensitive G-protein. J Biol Chem. 1994;269(10):7217–23.

    CAS  PubMed  Google Scholar 

  • Loss ES, Jacobsen M, et al. Testosterone modulates K+ATP channels in Sertoli cell membrane via the PLC-PIP2 pathway. Horm Metab Res. 2004;36(08):519–25.

    Article  CAS  PubMed  Google Scholar 

  • Lourenco D, Brauner R, et al. Loss-of-function mutation in GATA4 causes anomalies of human testicular development. Proc Natl Acad Sci USA. 2011;108(4):1597–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marti N, Galvan JA, et al. Genes and proteins of the alternative steroid backdoor pathway for dihydrotestosterone synthesis are expressed in the human ovary and seem enhanced in the polycystic ovary syndrome. Mol Cell Endocrinol. 2016;441:116–23.

    Article  PubMed  Google Scholar 

  • Matsumoto T, Sakari M, et al. The androgen receptor in health and disease. Annu Rev Physiol. 2013;75(1):201–24.

    Article  CAS  PubMed  Google Scholar 

  • Miller WL. The syndrome of 17,20 lyase deficiency. J Clin Endocrinol Metab. 2012;97(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  • Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32(1):81–151.

    Article  CAS  PubMed  Google Scholar 

  • Miller WL, Flück CE. Adrenal cortex and its disorders. In: Sperling MA, editor. Pediatric endocrinology. Philadelphia: Saunders; 2014.

    Google Scholar 

  • Neunzig J, Sánchez-Guijo A, et al. A steroidogenic pathway for sulfonated steroids: the metabolism of pregnenolone sulfate. J Steroid Biochem Mol Biol. 2014;144(Part B):324–33.

    Article  CAS  PubMed  Google Scholar 

  • Nicolo C, Flück CE, et al. Restoration of mutant cytochrome P450 reductase activity by external flavin. Mol Cell Endocrinol. 2010;321(2):245–52.

    Article  CAS  PubMed  Google Scholar 

  • Pandey AV, Flück CE. NADPH P450 oxidoreductase: structure, function, and pathology of diseases. Pharmacol Ther. 2013;138(2):229–54.

    Article  CAS  PubMed  Google Scholar 

  • Pandey AV, Sproll P. Pharmacogenomics of human P450 oxidoreductase. Front Pharmacol. 2014;5:103.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey AV, Kempna P, et al. Modulation of human CYP19A1 activity by mutant NADPH P450 oxidoreductase. Mol Endocrinol. 2007;21(10):2579–95.

    Article  CAS  PubMed  Google Scholar 

  • Papakonstanti EA, Kampa M, et al. A rapid, nongenomic, signaling pathway regulates the actin reorganization induced by activation of membrane testosterone receptors. Mol Endocrinol. 2003;17(5):870–81.

    Article  CAS  PubMed  Google Scholar 

  • Parween S, Roucher-Boulez F, et al. P450 oxidoreductase deficiency: loss of activity caused by protein instability from a novel L374H mutation. J Clin Endocrinol Metab. 2016;101(12):4789–98.

    Article  CAS  PubMed  Google Scholar 

  • Peterson RE, Imperato-McGinley J, et al. Male pseudohermaphroditism due to multiple defects in steroid-biosynthetic microsomal mixed-function oxidases. A new variant of congenital adrenal hyperplasia. N Engl J Med. 1985;313(19):1182–91.

    Article  CAS  PubMed  Google Scholar 

  • Pi M, Parrill AL, et al. GPRC6A mediates the non-genomic effects of steroids. J Biol Chem. 2010;285(51):39953–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prader A, Gurtner HP. The syndrome of male pseudohermaphrodism in congenital adrenocortical hyperplasia without overproduction of androgens (adrenal male pseudohermaphrodism). Helv Paediatr Acta. 1955;10(4):397–412.

    CAS  PubMed  Google Scholar 

  • Simoncini T, Genazzani A. Non-genomic actions of sex steroid hormones. Eur J Endocrinol. 2003;148(3):281–92.

    Article  CAS  PubMed  Google Scholar 

  • Strott CA. Steroid sulfotransferases. Endocr Rev. 1996;17(6):670–97.

    Article  CAS  PubMed  Google Scholar 

  • Suntharalingham JP, Buonocore F, et al. DAX-1 (NR0B1) and steroidogenic factor-1 (SF-1, NR5A1) in human disease. Best Pract Res Clin Endocrinol Metab. 2015;29(4):607–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swart AC, Storbeck KH. 11beta-Hydroxyandrostenedione: downstream metabolism by 11betaHSD, 17betaHSD and SRD5A produces novel substrates in familiar pathways. Mol Cell Endocrinol. 2015;408:114–23.

    Article  CAS  PubMed  Google Scholar 

  • Ueda T, Mawji NR, et al. Ligand-independent activation of the androgen receptor by Interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells. J Biol Chem. 2002;277(41):38087–94.

    Article  CAS  PubMed  Google Scholar 

  • Walker WH. Non-classical actions of testosterone and spermatogenesis. Philos Trans R Soc B: Biol Sci. 2010;365(1546):1557–69.

    Article  CAS  Google Scholar 

  • Wang C, Liu Y, et al. G protein-coupled receptors: extranuclear mediators for the non-genomic actions of steroids. Int J Mol Sci. 2014;15(9):15412.

    Article  PubMed  PubMed Central  Google Scholar 

  • van de Wijngaart DJ, Dubbink HJ, et al. Androgen receptor coregulators: recruitment via the coactivator binding groove. Mol Cell Endocrinol. 2012;352(1–2):57–69.

    Article  PubMed  Google Scholar 

  • Zachmann M. Prismatic cases: 17,20-desmolase (17,20-lyase) deficiency. J Clin Endocrinol Metab. 1996;81(2):457–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Swiss National Science Foundation grant 320030-146127.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christa E. Flück .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Flück, C.E., Pandey, A.V. (2017). Testicular Steroidogenesis. In: Simoni, M., Huhtaniemi, I. (eds) Endocrinology of the Testis and Male Reproduction. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-29456-8_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29456-8_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29456-8

  • Online ISBN: 978-3-319-29456-8

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics