Skip to main content

Graves’ Disease

  • Living reference work entry
  • First Online:
Book cover Thyroid Diseases

Part of the book series: Endocrinology ((ENDOCR))

  • 610 Accesses

Abstract

Graves’ disease (GD) is a common autoimmune thyroid disorder, affecting 20–30 per 100,000 of the population per year. In keeping with other autoimmune diseases, it exhibits a clear female preponderance (F:M 6–7:1) with approximately 3% of women and 0.5% of men developing GD during their lifetime.

GD is a complex genetic condition, with environmental factors precipitating the disease in genetically predisposed individuals who harbor multiple susceptibility alleles. Thyroid-stimulating hormone receptor (TSHR) antibodies are the immunological hallmark of the disease and the key driver for thyrocyte hyperplasia and the resulting hyperthyroidism. Our understanding of the pathogenesis of the condition has developed significantly in recent years, reflecting advances in human genomics, molecular immunology, and the availability of murine models of disease.

Clinical features in GD are widespread, with a myriad of typical symptoms and physical findings at presentation. Frequently reported symptoms include tremor, palpitations, heat intolerance, weight loss, and anxiety. Physical examination may reveal warm, tremulous extremities, atrial fibrillation, signs of thyroid orbitopathy, and a goiter with a bruit. A series of extrathyroidal manifestations can accompany GD at presentation or appear during the course of the disease; these are associated with elevated titers of circulating autoantibodies. The commonest extrathyroidal manifestation is thyroid orbitopathy, which can be sight-threatening and requires a detailed and careful approach to management. Recent developments in our understanding of the pathogenesis of these conditions may lead to the development of novel therapies in coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdel-Wahab N, Shah M, Suarez-Almazor ME. Adverse events associated with immune checkpoint blockade in patients with cancer: a systematic review of case reports. PLoS One. 2016;11(7):e0160221.

    Article  PubMed  PubMed Central  Google Scholar 

  • Adams DD, Fastier FN, Howie JB, Kennedy TH, Kilpatrick JA, Stewart RD. Stimulation of the human thyroid by infusions of plasma containing LATS protector. J Clin Endocrinol Metab. 1974;39(5):826–32.

    Article  CAS  PubMed  Google Scholar 

  • Arscott P, Rosen ED, Koenig RJ, Kaplan MM, Ellis T, Thompson N, et al. Immunoreactivity to Yersinia enterocolitica antigens in patients with autoimmune thyroid disease. J Clin Endocrinol Metab. 1992;75(1):295–300.

    CAS  PubMed  Google Scholar 

  • Arscott PL, Koenig RJ, Kaplan MM, Glick GD, Baker Jr JR. Unique autoantibody epitopes in an immunodominant region of thyroid peroxidase. J Biol Chem. 1996;271(9):4966–73.

    Article  CAS  PubMed  Google Scholar 

  • Atabani SF, Thio CL, Divanovic S, Trompette A, Belkaid Y, Thomas DL, et al. Association of CTLA4 polymorphism with regulatory T cell frequency. Eur J Immunol. 2005;35(7):2157–62.

    Article  CAS  PubMed  Google Scholar 

  • Ban Y, Greenberg DA, Concepcion E, Skrabanek L, Villanueva R, Tomer Y. Amino acid substitutions in the thyroglobulin gene are associated with susceptibility to human and murine autoimmune thyroid disease. Proc Natl Acad Sci USA. 2003;100(25):15119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ban Y, Davies TF, Greenberg DA, Concepcion ES, Osman R, Oashi T, et al. Arginine at position 74 of the HLA-DR β1 chain is associated with Graves’ disease. Genes Immun. 2004;5(3):203–8.

    Article  CAS  PubMed  Google Scholar 

  • Bartalena L, Martino E, Marcocci C, Bogazzi F, Panicucci M, Velluzzi F, et al. More on smoking habits and Graves’ ophthalmopathy. J Endocrinol Investig. 1989;12(10):733–7.

    Article  CAS  Google Scholar 

  • Bartalena L, Marcocci C, Tanda ML, Manetti L, Dell’Unto E, Bartolomei MP, et al. Cigarette smoking and treatment outcomes in Graves ophthalmopathy. Ann Intern Med. 1998;129(8):632–5.

    Article  CAS  PubMed  Google Scholar 

  • Beever K, Bradbury J, Phillips D, McLachlan SM, Pegg C, Goral A, et al. Highly sensitive assays of autoantibodies to thyroglobulin and to thyroid peroxidase. Clin Chem. 1989;35(9):1949–54.

    CAS  PubMed  Google Scholar 

  • Biondi BBL, Cooper DS, Hegedus L, Laurberg P, Kahaly GJ. The 2015 European Thyroid Association guidelines on diagnosis and treatment of endogenous subclinical hyperthyroidism. Eur Thyr J. 2015;4(3):149–63.

    Article  CAS  Google Scholar 

  • Brand OJ, Lowe CE, Heward JM, Franklyn JA, Cooper JD, Todd JA, et al. Association of the interleukin-2 receptor alpha (IL-2Rα)/CD25 gene region with Graves’ disease using a multilocus test and tag SNPs. Clin Endocrinol. 2007;66(4):508–12.

    CAS  Google Scholar 

  • Brix TH, Kyvik KO, Christensen K, Hegedüs L. Evidence for a major role of heredity in Graves’ disease: a population-based study of two Danish twin cohorts. J Clin Endocrinol Metab. 2001;86(2):930–4.

    CAS  PubMed  Google Scholar 

  • Brix TH, Hansen PS, Hegedüs L, Wenzel BE. Too early to dismiss Yersinia enterocolitica infection in the aetiology of Graves’ disease: evidence from a twin case-control study. ClinEndocrinol. 2008;69:491–6.

    Google Scholar 

  • Brix TH, Hegedüs L, Weetman AP, Kemp HE. Pendrin and NIS antibodies are absent in healthy individuals and are rare in autoimmune thyroid disease: evidence from a Danish twin study. Clin Endocrinol. 2014;81(3):440–4.

    Article  CAS  Google Scholar 

  • Bülow Pedersen I, Knudsen N, Carlé A, Schomburg L, Köhrle J, Jørgensen T, et al. Serum selenium is low in newly diagnosed Graves’ disease: a population-based study. Clin Endocrinol. 2013;79(4):584–90.

    Article  Google Scholar 

  • Burch HB, Cooper DS. Management of graves disease a review. JAMA. 2015;314(23):2544–54.

    Article  CAS  PubMed  Google Scholar 

  • Chazenbalk GD, Portolano S, Russo D, Hutchison JS, Rapoport B, McLachlan S. Human organ-specific autoimmune disease Molecular cloning and expression of an autoantibody gene repertoire for a major autoantigen reveals an antigenic immunodominant region and restricted immunoglobulin gene usage in the target organ. J Clin Investig. 1993;92(1):62–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chazenbalk GD, Pichurin P, Chen CR, Latrofa F, Johnstone AP, McLachlan SM, et al. Thyroid-stimulating autoantibodies in Graves disease preferentially recognize the free A subunit, not the thyrotropin holoreceptor. J Clin Investig. 2002;110(2):209–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CR, Pichurin P, Nagayama Y, Latrofa F, Rapoport B, McLachlan SM. The thyrotropin receptor autoantigen in Graves disease is the culprit as well as the victim. J Clin Investig. 2003;111(12):1897–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Day SL, Metcalfe RA, Sethi G, Kapembwa MS, Brook MG, et al. Characteristics of autoimmune thyroid disease occurring as a late complication of immune reconstitution in patients with advanced human immunodeficiency virus (HIV) disease. Medicine. 2005;84(2):98–106.

    Article  CAS  PubMed  Google Scholar 

  • Coles AJ, Wing M, Smith S, Coraddu F, Greer S, Taylor C, et al. Pulsed monoclonal antibody treatment and autoimmune thyroid disease in multiple sclerosis. Lancet. 1999;354(9191):1691–5.

    Article  CAS  PubMed  Google Scholar 

  • Collins JE, Heward JM, Carr-Smith J, Daykin J, Franklyn JA, Gough SCL. Association of a rare thyroglobulin gene microsatellite variant with autoimmune thyroid disease. J Clin Endocrinol Metab. 2003;88(10):5039–42.

    Article  CAS  PubMed  Google Scholar 

  • Colobran R, MdP A, Faner R, Gärtner M, Tykocinski L, Lucas A, et al. Association of an SNP with intrathymic transcription of TSHR and Graves’ disease: a role for defective thymic tolerance. Hum Mol Genet. 2011;20(17):3415–23.

    Article  CAS  PubMed  Google Scholar 

  • Costagliola S, Bonomi M, Morgenthaler NG, Van Durme J, Panneels V, Refetoff S, et al. Delineation of the discontinuous-conformational epitope of a monoclonal antibody displaying full in vitro and in vivo thyrotropin activity. Mol Endocrinol. 2004;18(12):3020–34.

    Article  CAS  PubMed  Google Scholar 

  • Criswell LA, Pfeiffer KA, Lum RF, Gonzales B, Novitzke J, Kern M, et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620 W allele associates with multiple autoimmune phenotypes. Am J Hum Genet. 2005;76(4):561–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dechairo BM, Zabaneh D, Collins J, Brand O, Dawson GJ, Green AP, et al. Association of the TSHR gene with Graves’ disease: the first disease specific locus. Eur J Hum Genet. 2005;13(11):1223–30.

    Article  CAS  PubMed  Google Scholar 

  • Eckstein A, Quadbeck B, Mueller G, Rettenmeier AW, Hoermann R, Mann K, et al. Impact of smoking on the response to treatment of thyroid associated ophthalmopathy. Br J Ophthalmol. 2003;87(6):773–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eschler DC, Hasham A, Tomer Y. Cutting edge: the etiology of autoimmune thyroid diseases. Clin Rev Allergy Immunol. 2011;41(2):190–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Facciani JM, Kazim M. Absence of seasonal variation in Graves disease. Ophthal Plast Reconstr Surg. 2000;16(1):67–71.

    Article  CAS  PubMed  Google Scholar 

  • Farid NR, Sampson L, Noel EP, Barnard JM, Mandeville R, Larsen B, et al. A study of human leukocyte D locus related antigens in Graves’ disease. J Clin Investig. 1979;63(1):108–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gora M, Gardas A, Wiktorowicz W, Hobby P, Watson PF, Weetman AP, et al. Evaluation of conformational epitopes on thyroid peroxidase by antipeptide antibody binding and mutagenesis. Clin Exp Immunol. 2004;136(1):137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grumet FC, Payne RO, Kinishi J, Kriss JP. HL A antigens as markers for disease susceptibility and autoimmunity in Grave’s disease. J Clin Endocrinol Metab. 1974;39(6):1115–9.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton A, Newby PR, Carr-Smith JD, Disanto G, Allahabadia A, Armitage M, et al. Impact of month of birth on the development of autoimmune thyroid disease in the United Kingdom and Europe. J Clin Endocrinol Metab. 2014;99(8):E1459–E65.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Kouki T, Takasu N, Sunagawa S, Komiya I. Association of an A/C single nucleotide polymorphism in programmed cell death-ligand 1 gene with Graves’ disease in Japanese patients. Eur J Endocrinol. 2008;158(6):817–22.

    Article  CAS  PubMed  Google Scholar 

  • Heward JM, Allahabadia A, Daykin J, Carr-Smith J, Daly A, Armitage M, et al. Linkage disequilibrium between the human leukocyte antigen class II region of the major histocompatibility complex and Graves’ disease: replication using a population case control and family-based study. J Clin Endocrinol Metab. 1998;83(10):3394–7.

    CAS  PubMed  Google Scholar 

  • Hidaka Y, Amino N, Iwatani Y, Itoh E, Matsunaga M, Tamaki H. Recurrence of thyrotoxicosis after attack of allergic rhinitis in patients with Graves’ disease. J Clin Endocrinol Metab. 1993;77(6):1667–70.

    CAS  PubMed  Google Scholar 

  • Hiratani H, Bowden DW, Ikegami S, Shirasawa S, Shimizu A, Iwatani Y, et al. Multiple SNPs in intron 7 of thyrotropin receptor are associated with Graves’ disease. J Clin Endocrinol Metab. 2005;90(5):2898–903.

    Article  CAS  PubMed  Google Scholar 

  • Hollowell JG, Staehling NW, Dana Flanders W, Harry Hannon W, Gunter EW, Spencer CA, et al. Serum TSH, T4, and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87(2):489–99.

    Article  CAS  PubMed  Google Scholar 

  • Holm IA, Manson JE, Michels KB, Alexander EK, Willett WC, Utiger RD. Smoking and other lifestyle factors and the risk of graves’ hyperthyroidism. Arch Intern Med. 2005;165(14):1606–11.

    Article  PubMed  Google Scholar 

  • Hou TZ, Qureshi OS, Wang CJ, Baker J, Young SP, Walker LSK, et al. A transendocytosis model of CTLA-4 function predicts its suppressive behavior on regulatory T cells. J Immunol. 2015;194(5):2148–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson EM, Huber A, Tomer Y. The HLA gene complex in thyroid autoimmunity: from epidemiology to etiology. J Autoimmun. 2008;30(1–2):58–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaume JC, Guo J, Pauls DL, Zakarija M, McKenzie JM, Egeland JA, et al. Evidence for genetic transmission of thyroid peroxidase autoantibody epitopic ‘fingerprints’. J Clin Endocrinol Metab. 1999;84(4):1424–31.

    CAS  PubMed  Google Scholar 

  • Khoury EL, Hammond L, Bottazzo GF, Doniach D. Presence of the organ-specific ‘microsomal’ autoantigen on the surface of human thyroid cells in culture: its involvement in complement-mediated cytotoxicity. Clin Exp Immunol. 1981;45(2):316–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krassas GE, Tziomalos K, Pontikides N, Lewy H, Laron Z. Seasonality of month of birth of patients with Graves’ and Hashimoto’s diseases differ from that in the general population. Eur J Endocrinol. 2007;156(6):631–6.

    Article  CAS  PubMed  Google Scholar 

  • Laurberg P, Pedersen KM, Vestergaard H, Sigurdsson G. High incidence of multinodular toxic goitre in the elderly population in a low iodine intake area vs. high incidence of Graves’ disease in the young in a high iodine intake area: comparative surveys of thyrotoxicosis epidemiology in East-Jutland Denmark and Iceland. J Intern Med. 1991;229(5):415–20.

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Wang HN, Gu ZH, Yang SY, Ye XP, Pan CM, et al. Identification of BACH2 as a susceptibility gene for Graves’ disease in the Chinese Han population based on a three-stage genome-wide association study. Hum Genet. 2014;133(5):661–71.

    Article  CAS  PubMed  Google Scholar 

  • Marcocci C, Kahaly GJ, Krassas GE, Bartalena L, Prummel M, Stahl M, et al. Selenium and the course of mild Graves’ orbitopathy. N Engl J Med. 2011;364(20):1920–31.

    Article  CAS  PubMed  Google Scholar 

  • Marinò M, Chiovato L, Lisi S, Altea MA, Marcocci C, Pinchera A. Role of thyroglobulin in the pathogenesis of Graves’ ophthalmopathy: the hypothesis of Kriss revisited. J Endocrinol Investig. 2004;27(3):230–6.

    Article  Google Scholar 

  • Minich WB, Dehina N, Welsink T, Schwiebert C, Morgenthaler NG, Köhrle J, Eckstein A, Schomburg L. Autoantibodies to the IGF1 receptor in Graves’ orbitopathy. J Clin Endocrinol Metab. 2013;98(2):752–60.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell AL, Pearce SH. How should we treat patients with low serum thyrotropin concentrations? Clin Endocrinol. 2010;72(3):292–6.

    Article  CAS  Google Scholar 

  • Mitchell AL, Cordell HJ, Soemedi R, Owen K, Skinningsrud B, Wolff AB, et al. Programmed death ligand 1 (PD-L1) gene variants contribute to autoimmune Addison’s disease and Graves’ disease susceptibility. J Clin Endocrinol Metab. 2009;94(12):5139–45.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell AL, Goss L, Mathiopoulou L, Morris M, Vaidya B, Dickinson AJ, Quinn A, Dayan C, McLaren J, Hickey JL, Lazarus JH, Rose GE, Foley P, MacEwen CJ, Perros P. Diagnosis of Graves’ orbitopathy (DiaGO): results of a pilot study to assess the utility of an office tool for practicing endocrinologists. J Clin Endocrinol Metab. 2015;100(3):E458–62.

    Article  CAS  PubMed  Google Scholar 

  • Mizokami T, Li AW, El-Kaissi S, Wall JR. Stress and thyroid autoimmunity. Thyroid. 2004;14(12):1047–55.

    Article  CAS  PubMed  Google Scholar 

  • Munakata Y, Kodera T, Saito T, Sasaki T. Rheumatoid arthritis, type 1 diabetes, and Graves’ disease after acute parvovirus B19 infection. Lancet. 2005;366(9487):780.

    Article  PubMed  Google Scholar 

  • Nakashima M, Martin A, Davies TF. Intrathyroidal T cell accumulation in Graves’ disease: delineation of mechanisms based on in situ T cell receptor analysis. J Clin Endocrinol Metab. 1996;81(9):3346–51.

    CAS  PubMed  Google Scholar 

  • Neumann S, Place RF, Krieger CC, Gershengorn MC. Future prospects for the treatment of Graves’ hyperthyroidism and eye disease. Horm Metab Res. 2015;47(10):789–96.

    Article  CAS  PubMed  Google Scholar 

  • Nyström HF, Jansson S, Berg G. Incidence rate and clinical features of hyperthyroidism in a long-term iodine sufficient area of Sweden (Gothenburg) 2003–2005. Clin Endocrinol. 2013;78(5):768–76.

    Article  Google Scholar 

  • Pfeilschifter J, Ziegler R. Smoking and endocrine ophthalmopathy: impact of smoking severity and current vs lifetime cigarette consumption. Clin Endocrinol. 1996;45(4):477–81.

    Article  CAS  Google Scholar 

  • Prummel MF, Wiersinga WM. Smoking and risk of Graves’ disease. JAMA. 1993;269(4):479–82.

    Article  CAS  PubMed  Google Scholar 

  • Qin Q, Wang X, Yan N, Song RH, Cai TT, Zhang W, Guan LJ, Muhali FS, Zhang JA. Aberrant expression of miRNA and mRNAs in lesioned tissues of Graves’ disease. Cell Physiol Biochem. 2015;35(5):1934–42.

    Article  CAS  PubMed  Google Scholar 

  • Sato A, Takemura Y, Yamada T, Ohtsuka H, Sakai H, Miyahara Y, et al. A possible role of immunoglobulin E in patients with hyperthyroid Graves’ disease. J Clin Endocrinol Metab. 1999;84(10):3602–5.

    CAS  PubMed  Google Scholar 

  • Simmonds MJ, Howson JMM, Heward JM, Cordell HJ, Foxall H, Carr-Smith J, et al. Regression mapping of association between the human leukocyte antigen region and Graves disease. Am J Hum Genet. 2005;76(1):157–63.

    Article  CAS  PubMed  Google Scholar 

  • Simmonds MJ, Brand OJ, Barrett JC, Newby PR, Franklyn JA, Gough SCL. Association of Fc receptor-like 5 (FCRL5) with Graves’ disease is secondary to the effect of FCRL3. Clin Endocrinol. 2010;73(5):654–60.

    Article  CAS  Google Scholar 

  • Smith TJ, Hegedüs L. Graves’ Disease. N Engl J Med. 2016;375(16):1552–65.

    Article  PubMed  Google Scholar 

  • Smith BR, Bolton J, Young S, Collyer A, Weeden A, Bradbury J, et al. A new assay for thyrotropin receptor autoantibodies. Thyroid. 2004;14(10):830–5.

    Article  CAS  PubMed  Google Scholar 

  • Smyth D, Cooper JD, Collins JE, Heward JM, Franklyn JA, Howson JMM, et al. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes. 2004;53(11):3020–3.

    Article  CAS  PubMed  Google Scholar 

  • Song HD, Liang J, Shi JY, Zhao SX, Liu Z, Zhao JJ, et al. Functional SNPs in the SCGB3A2 promoter are associated with susceptibility to Graves’ disease. Hum Mol Genet. 2009;18(6):1156–70.

    Article  CAS  PubMed  Google Scholar 

  • Stefan M, Jacobson EM, Huber AK, Greenberg DA, Li CW, Skrabanek L, et al. Novel variant of thyroglobulin promoter triggers thyroid autoimmunity through an epigenetic interferon α-modulated mechanism. J Biol Chem. 2011;286(36):31168–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strieder TGA, Prummel MF, Tijssen JGP, Endert E, Wiersinga WM. Risk factors for and prevalence of thyroid disorders in a cross-sectional study among healthy female relatives of patients with autoimmune thyroid disease. Clin Endocrinol. 2003a;59(3):396–401.

    Article  Google Scholar 

  • Strieder TGA, Wenzel BE, Prummel MF, Tijssen JGP, Wiersinga WM. Increased prevalence of antibodies to enteropathogenic Yersinia enterocolitica virulence proteins in relatives of patients with autoimmune thyroid disease. Clin Exp Immunol. 2003b;132(2):278–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strieder TGA, Prummel MF, Tijssen JGP, Brosschot JF, Wiersinga WM. Stress is not associated with thyroid peroxidase autoantibodies in euthyroid women. Brain Behav Immun. 2005;19(3):203–6.

    Article  CAS  PubMed  Google Scholar 

  • Strieder TGA, Tijssen JGP, Wenzel BE, Endert E, Wiersinga WM. Prediction of progression to overt hypothyroidism or hyperthyroidism in female relatives of patients with autoimmune thyroid disease using the thyroid events Amsterdam (THEA) score. Arch Intern Med. 2008;168(15):1657–63.

    Article  PubMed  Google Scholar 

  • Sutherland A, Davies J, Owen CJ, Vaikkakara S, Walker C, Cheetham TD, et al. Brief report: genomic polymorphism at the interferon-induced helicase (IFIH1) locus contributes to Graves’ disease susceptibility. J Clin Endocrinol Metab. 2007;92(8):3338–41.

    Article  CAS  PubMed  Google Scholar 

  • Tomer Y, Davies TF. Infection, thyroid disease, and autoimmunity. Endocr Rev. 1993;14(1):107–20.

    CAS  PubMed  Google Scholar 

  • Tomer Y, Concepcion E, Greenberg DA. A C/T single-nucleotide polymorphism in the region of the CD40 gene is associated with Graves’ disease. Thyroid. 2002a;12(12):1129–35.

    Article  CAS  PubMed  Google Scholar 

  • Tomer Y, Greenberg DA, Concepcion E, Ban Y, Davies TF. Thyroglobulin is a thyroid specific gene for the familial autoimmune thyroid diseases. J Clin Endocrinol Metab. 2002b;87(1):404–7.

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Howson JMM, Esposito L, Heward J, Snook H, Chamberlain G, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003;423(6939):506–11.

    Article  CAS  PubMed  Google Scholar 

  • Vaidya B, Pearce S. The emerging role of the CTLA-4 gene in autoimmune endocrinopathies. Eur J Endocrinol. 2004;150(5):619–26.

    Article  CAS  PubMed  Google Scholar 

  • Vaidya B, Pearce SH. Diagnosis and management of thyrotoxicosis. BMJ. 2014;349:g5128.

    Article  PubMed  Google Scholar 

  • Vaidya B, Imrie H, Perros P, Young ET, Kelly WF, Carr D, et al. The cytotoxic T lymphocyte antigen-4 is a major Graves’ disease locus. Hum Mol Genet. 1999;8(7):1195–9.

    Article  CAS  PubMed  Google Scholar 

  • Vaidya B, Kendall-Taylor P, Pearce SHS. Genetics of endocrine disease: the genetics of autoimmune thyroid disease. J Clin Endocrinol Metab. 2002;87(12):5385–97.

    Article  CAS  PubMed  Google Scholar 

  • Vanderpump MPJ, Tunbridge WMG, French JM, Appleton D, Bates D, Clark F, et al. The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey. Clin Endocrinol. 1995;43(1):55–68.

    Article  CAS  Google Scholar 

  • Vang T, Congia M, Macis MD, Musumeci L, Orrú V, Zavattari P, et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet. 2005;37(12):1317–9.

    Article  CAS  PubMed  Google Scholar 

  • Velaga MR, Wilson V, Jennings CE, Owen CJ, Herington S, Donaldson PT, et al. The codon 620 tryptophan allele of the Lymphoid Tyrosine Phosphatase (LYP) gene is a major determinant of Graves’ disease. J Clin Endocrinol Metab. 2004;89(11):5862–5.

    Article  CAS  PubMed  Google Scholar 

  • Weetman AP. Graves’ disease following immune reconstitution or immunomodulatory treatment: should we manage it any differently? Clin Endocrinol. 2014;80(5):629–32.

    Article  CAS  Google Scholar 

  • Weetman AP, Cohen S. The IgG subclass distribution of thyroid autoantibodies. Immunol Lett. 1986;13(6):335–41.

    Article  CAS  PubMed  Google Scholar 

  • Weetman AP, McGregor AM, Lazarus JH, Hall R. Thyroid antibodies are produced by thyroid derived lymphocytes. Clin Exp Immunol. 1982;48(1):196–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiersinga WM. Smoking and thyroid. Clin Endocrinol. 2013;79(2):145–51.

    Article  CAS  Google Scholar 

  • Winsa B, Karlsson A, Bergstrom R, Adami HO, Gamstedt A, Jansson R, et al. Stressful life events and Graves’ disease. Lancet. 1991;338(8781):1475–9.

    Article  CAS  PubMed  Google Scholar 

  • Yanagawa T, DeGroot LJ. HLA class II associations in African-American female patients with Graves’ disease. Thyroid. 1996;6(1):37–9.

    Article  CAS  PubMed  Google Scholar 

  • Yanagawa T, Mangklabruks A, Chang YB, Okamoto Y, Fisfalen ME, Curran PG, et al. Human histocompatibility leukocyte antigen-DQA1*0501 allele associated with genetic susceptibility to graves’ disease in a caucasian population. J Clin Endocrinol Metab. 1993;76(6):1569–74.

    CAS  PubMed  Google Scholar 

  • Yanagawa T, Hidaka Y, Guimaraes V, Soliman M, DeGroot LJ. CTLA-4 gene polymorphism associated with Graves’ disease in a Caucasian population. J Clin Endocrinol Metab. 1995;80(1):41–5.

    CAS  PubMed  Google Scholar 

  • Yasuda T, Okamoto Y, Hamada N, Miyashita K, Takahara M, Sakamoto F, et al. Serum vitamin D levels are decreased and associated with thyroid volume in female patients with newly onset Graves’ disease. Endocrine. 2012;42(3):739–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda T, Okamoto Y, Hamada N, Miyashita K, Takahara M, Sakamoto F, et al. Serum vitamin D levels are decreased in patients without remission of Graves’ disease. Endocrine. 2013;43(1):230–2.

    Article  CAS  PubMed  Google Scholar 

  • Yoshiuchi K, Kumano H, Nomura S, Yoshimura H, Ito K, Kanaji Y, et al. Stressful life events and smoking were associated with Graves’ disease in women, but not in men. Psychosom Med. 1998;60(2):182–5.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann MB, Boelaert K. Iodine deficiency and thyroid disorders. Lancet Diabet Endocrinol. 2015;3(4):286–95.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon H S Pearce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Napier, C., Pearce, S.H.S. (2016). Graves’ Disease. In: Vitti, P., Hegedus, L. (eds) Thyroid Diseases. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-29195-6_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29195-6_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-29195-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics