Advertisement

Optimization of MRI Contrast for Preclinical Studies at High Magnetic Field

Reference work entry

Abstract

Although pre-clinical MRI scanners often have recommended scanning protocols, due to the nature of biological research, it is often the case that adaptations to the protocols are required for timing or improved tissue visualization. This chapter describes how to generate an MRI scan protocol which is optimal for a custom pre-clinical imaging experiment.

Keywords

T1 T2 SNR CNR preclinical high field contrast agent contrast optimisation 

References

  1. 1.
    Hart AG, Bowtell RW, Köckenberger W, Wenseleers T, Ratnieks FL. Magnetic resonance imaging in entomology: a critical review. J Insect Sci. 2003;3(5):1–9.CrossRefGoogle Scholar
  2. 2.
    Johnson GA, Cofer GP, Gewalt SL, Hedlund LW. Morphologic phenotyping with MR microscopy: the visible mouse. Radiology. 2002;222(3):789–93.CrossRefGoogle Scholar
  3. 3.
    Kovacevic N, Henderson JT, Chan E, et al. A three-dimensional MRI atlas of the mouse brain with estimates of the average and variability. Cereb Cortex. 2005;15(5):639–45.CrossRefGoogle Scholar
  4. 4.
    Dhenain M, Ruffins SW, Jacobs RE. Three-dimensional digital mouse atlas using high-resolution MRI. Dev Biol. 2001;232(2):458–70.CrossRefGoogle Scholar
  5. 5.
    Natt O, Watanabe T, Boretius S, Radulovic J, Frahm J, Michaelis T. High-resolution 3D MRI of mouse brain reveals small cerebral structures in vivo. J Neurosci Methods. 2002;120(2):203–9.CrossRefGoogle Scholar
  6. 6.
    Haacke EM, Brown RW, Thompson MR, Venkatesan R. Magnetic resonance imaging: physical principles and sequence design. New York: Wiley; 1999.Google Scholar
  7. 7.
    NessAiver M. All you really need to know about MRI Physics. Baltimore: Harbor Duvall Graphics; 1997.Google Scholar
  8. 8.
    Zhao M, Beauregard DA, Loizou L, Davletov B, Brindle KM. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med. 2001;7(11):1241–4.CrossRefGoogle Scholar
  9. 9.
    Rudelius M, Daldrup-Link HE, Heinzmann U, et al. Highly efficient paramagnetic labelling of embryonic and neuronal stem cells. Eur J Nucl Med Mol Imaging. 2003;30(7):1038–44.CrossRefGoogle Scholar
  10. 10.
    Modo M, Mellodew K, Cash D, et al. Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. NeuroImage. 2004;21(1):311–7.CrossRefGoogle Scholar
  11. 11.
    Meade TJ, Taylor AK, Bull SR. New magnetic resonance contrast agents as biochemical reporters. Curr Opin Neurobiol. 2003;13(5):597–602.CrossRefGoogle Scholar
  12. 12.
    Kamaly N, Kalber T, Ahmad A, Oliver M, So P-W, Herlihy AH, et al. Bimodal paramagnetic and fluorescent liposomes for cellular and tumor magnetic resonance imaging. Bioconjug Chem. 2008;19(1):118–29.CrossRefGoogle Scholar
  13. 13.
    Robson M, Gatehouse P, Bydder M, Bydder G. Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr. 2003;27:825–46.CrossRefGoogle Scholar
  14. 14.
    Lin YJ, Koretsky AP. Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med. 1997;38(3):378–88.CrossRefGoogle Scholar
  15. 15.
    Watanabe T, Radulovic J, Spiess J, et al. In vivo 3D MRI staining of the mouse hippocampal system using intracerebral injection of MnCl2. NeuroImage. 2004;22(2):860–7.CrossRefGoogle Scholar
  16. 16.
    Allegrini PR, Wiessner C. Three-dimensional MRI of cerebral projections in rat brain in vivo after intracortical injection of MnCl2. NMR Biomed. 2003;16(5):252–6.CrossRefGoogle Scholar
  17. 17.
    Aoki I, Tanaka C, Takegami T, Ebisu T, Umeda M, Fukunaga M, et al. Dynamic activity-induced manganese-dependent contrast magnetic resonance imaging (DAIM MRI). Magn Reson Med. 2002;48(6):927–33.CrossRefGoogle Scholar
  18. 18.
    Pautler RG, Koretsky AP. Tracing odor-induced activation in the olfactory bulbs of mice using manganese-enhanced magnetic resonance imaging. NeuroImage. 2002;16(2):441–8.CrossRefGoogle Scholar
  19. 19.
    Barbier EL, Lamalle L, Decorps M. Methodology of brain perfusion imaging. J Magn Reson Imaging. 2001;13(4):496–520.CrossRefGoogle Scholar
  20. 20.
    Vexler ZS, Roberts TP, Bollen AW, Derugin N, Arieff AI. Transient cerebral ischemia. Association of apoptosis induction with hypoperfusion. J Clin Invest. 1997;99(6):1453–9.CrossRefGoogle Scholar
  21. 21.
    Veldhuis WB, Derksen JW, Floris S, et al. Interferon-beta blocks infiltration of inflammatory cells and reduces infarct volume after ischemic stroke in the rat. J Cereb Blood Flow Metab. 2003;23(9):1029–39.CrossRefGoogle Scholar
  22. 22.
    Dijkhuizen RM, Asahi M, Wu O, Rosen BR, Lo EH. Rapid breakdown of microvascular barriers and subsequent hemorrhagic transformation after delayed recombinant tissue plasminogen activator treatment in a rat embolic stroke model. Stroke. 2002;33(8):2100–4.CrossRefGoogle Scholar
  23. 23.
    Lim TH, Choi SI. MRI of myocardial infarction. J Magn Reson Imaging. 1999;10(5):686–93.CrossRefGoogle Scholar
  24. 24.
    Flacke S, Allen JS, Chia JM, et al. Characterization of viable and nonviable myocardium at MR imaging: comparison of gadolinium-based extracellular and blood pool contrast materials versus manganese-based contrast materials in a rat myocardial infarction model. Radiology. 2003;226(3):731–8.CrossRefGoogle Scholar
  25. 25.
    Weiss CR, Aletras AH, London JF, et al. Stunned, infarcted, and normal myocardium in dogs: simultaneous differentiation by using gadolinium-enhanced cine MR imaging with magnetization transfer contrast. Radiology. 2003;226(3):723–30.CrossRefGoogle Scholar
  26. 26.
    Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100(19):1992–2002.CrossRefGoogle Scholar
  27. 27.
    Fieno DS, Hillenbrand HB, Rehwald WG, Harris KR, Decker RS, Parker MA, et al. Infarct resorption, compensatory hypertrophy, and differing patterns of ventricular remodeling following myocardial infarctions of varying size. J Am Coll Cardiol. 2004;43(11):2124–31.CrossRefGoogle Scholar
  28. 28.
    Lekx KS, Prato FS, Sykes J, Wisenberg G. The partition coefficient of Gd-DTPA reflects maintained tissue viability in a canine model of chronic significant coronary stenosis. J Cardiovasc Magn Reson. 2004;6(1):33–42.CrossRefGoogle Scholar
  29. 29.
    Rickers C, Gallegos R, Seetharamaraju RT, et al. Applications of magnetic resonance imaging for cardiac stem cell therapy. J Interv Cardiol. 2004;17(1):37–46.CrossRefGoogle Scholar
  30. 30.
    Dick AJ, Guttman MA, Raman VK, Peters DC, Pessanha BS, Hill JM, et al. Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in Swine. Circulation. 2003;108(23):2899–904.CrossRefGoogle Scholar
  31. 31.
    Hill JM, Dick AJ, Raman VK, et al. Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation. 2003;108(8):1009–14.CrossRefGoogle Scholar
  32. 32.
    Saeed M, Lund G, Wendland MF, Bremerich J, Weinmann H-J, Higgins CB. Magnetic resonance characterization of the peri-infarction zone of reperfused myocardial infarction with necrosis-specific and extracellular nonspecific contrast media. Circulation. 2001;103(6):871–6.CrossRefGoogle Scholar
  33. 33.
    Oshinski JN, Yang Z, Jones JR, Mata JF, French BA. Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation. 2001;104(23):2838–42.CrossRefGoogle Scholar
  34. 34.
    Hu TC, Pautler RG, MacGowan GA, Koretsky AP. Manganese-enhanced MRI of mouse heart during changes in inotropy. Magn Reson Med. 2001;46(5):884–90.CrossRefGoogle Scholar
  35. 35.
    Krombach GA, Saeed M, Higgins CB, Novikov V, Wendland MF. Contrast-enhanced MR delineation of stunned myocardium with administration of MnCl(2) in rats. Radiology. 2004;230(1):183–90.CrossRefGoogle Scholar
  36. 36.
    Fink C, Kiessling F, Bock M, Lichy MP, Misselwitz B, Peschke P, et al. High-resolution three-dimensional MR angiography of rodent tumors: morphologic characterization of intratumoral vasculature. J Magn Reson Imaging. 2003;18(1):59–65.CrossRefGoogle Scholar
  37. 37.
    Ruehm SG, Christina H, Violas X, Corot C, Debatin JF. MR angiography with a new rapid-clearance blood pool agent: initial experience in rabbits. Magn Reson Med. 2002;48(5):844–51.CrossRefGoogle Scholar
  38. 38.
    Wacker FK, Wendt M, Ebert W, Hillenbrandt C, Wolf KJ, Lewin JS. Use of a blood-pool contrast agent for MR-guided vascular procedures: feasibility of ultrasmall superparamagnetic iron oxide particles. Acad Radiol. 2002;9(11):1251–4.CrossRefGoogle Scholar
  39. 39.
    Thomas AL, Morgan B, Drevs J, Unger C, Wiedenmann B, Vanhoefer U, et al. Vascular endothelial growth factor receptor tyrosine kinase inhibitors: PTK787/ZK 222584. Semin Oncol. 2003;30(3 Suppl 6):32–8.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medical ImagingChi Mei Medical CenterTainanTaiwan
  2. 2.Perspectum Diagnostics LtdOxfordUK

Personalised recommendations