Development and Application of In Situ High-Temperature, High-Pressure Magic Angle Spinning NMR

  • Nicholas R. Jaegers
  • Mary Y. Hu
  • David W. Hoyt
  • Yong Wang
  • Jian Zhi Hu
Reference work entry


Solid-state NMR has served as an important tool for investigating chemical systems, not only to better understand the structure of materials, but also to probe the interactions that occur between two or more constituents. Disparities between realistic chemical environments and those experienced during spectroscopic measurements have challenged a firm understanding of these systems. To address this concern, novel methods of conducting NMR spectroscopy under conditions of high pressure and high temperature have been developed to simulate these harsh conditions. Herein, the advancement of this technology is described by detailing the design iterations as the methods have matured to their present state. Several applications from the fields of geochemistry, catalysis, and materials science are recounted that demonstrate the capabilities and usefulness of high-temperature, high-pressure MAS NMR across diverse facets of scientific study.


In situ NMR High-pressure High-temperature Geochemistry Zeolite Biomass Material synthesis 


  1. 1.
    Andrew ER, Bradbury A, Eades RG. Nuclear Magnetic Resonance Spectra from a Crystal rotated at High Speed. Nature. 1958;182:1659.CrossRefGoogle Scholar
  2. 2.
    Lowe IJ. Free Induction Decays of Rotating Solids. Phys Rev Lett. 1959;2:285–7.CrossRefGoogle Scholar
  3. 3.
    Miyoshi T, Takegoshi K, Terao T. 13C High-Pressure CPMAS NMR Characterization of the Molecular Motion of Polystyrene Plasticized by CO2 Gas. Macromolecules. 1997;30:6582–5.CrossRefGoogle Scholar
  4. 4.
    Miyoshi T, Takegoshi K, Terao T. 129Xe n.m.r. study of free volume and phase separation of the polystyrene/poly(vinyl methyl ether) blend. Polymer. 1997;38:5475–80.CrossRefGoogle Scholar
  5. 5.
    Miyoshi T, Takegoshi K, Terao T. Effects of Xe Gas on Segmental Motion in a Polymer Blend As Studied by 13C and 129Xe High-Pressure MAS NMR. Macromolecules. 2002;35:151–4.CrossRefGoogle Scholar
  6. 6.
    Yonker CR, Linehan JC. The use of supercritical fluids as solvents for NMR spectroscopy. Prog Nucl Magn Reson Spectrosc. 2005;47:95–109.CrossRefGoogle Scholar
  7. 7.
    Deuchande T, Breton O, Haedelt J, Hughes E. Design and performance of a high pressure insert for use in a standard magic angle spinning NMR probe. J Magn Reson. 2006;183:178–82.CrossRefGoogle Scholar
  8. 8.
    Hoyt DW, Turcu RVF, Sears JA, Rosso KM, Burton SD, Felmy AR, et al. High-pressure magic angle spinning nuclear magnetic resonance. J Magn Reson. 2011;212:378–85.CrossRefGoogle Scholar
  9. 9.
    Turcu RVF, Hoyt DW, Rosso KM, Sears JA, Loring JS, Felmy AR, et al. Rotor design for high pressure magic angle spinning nuclear magnetic resonance. J Magn Reson. 2013;226:64–9.CrossRefGoogle Scholar
  10. 10.
    Vjunov A, Hu MY, Feng J, Camaioni DM, Mei D, Hu JZ, et al. Following solid-acid-catalyzed reactions by MAS NMR spectroscopy in liquid phase – zeolite-catalyzed conversion of cyclohexanol in water. Angew Chem Int Ed. 2014;53:479–82.CrossRefGoogle Scholar
  11. 11.
    Hu JZ, Hu MY, Zhao Z, Xu S, Vjunov A, Shi H, et al. Sealed rotors for in situ high temperature high pressure MAS NMR. Chem Commun. 2015;51:13458–61.CrossRefGoogle Scholar
  12. 12.
    Loring JS, Schaef HT, Turcu RVF, Thompson CJ, Miller QRS, Martin PF, et al. In Situ Molecular Spectroscopic Evidence for CO2 Intercalation into Montmorillonite in Supercritical Carbon Dioxide. Langmuir. 2012;28:7125–8.CrossRefGoogle Scholar
  13. 13.
    Miller QRS, Thompson CJ, Loring JS, Windisch CF, Bowden ME, Hoyt DW, et al. Insights into silicate carbonation processes in water-bearing supercritical CO2 fluids. Int J Greenhouse Gas Control. 2013;15:104–18.CrossRefGoogle Scholar
  14. 14.
    Bowers GM, Hoyt DW, Burton SD, Ferguson BO, Varga T, Kirkpatrick RJ. In Situ 13C and 23Na Magic Angle Spinning NMR Investigation of Supercritical CO2 Incorporation in Smectite–Natural Organic Matter Composites. J Phys Chem C. 2014;118:3564–73.CrossRefGoogle Scholar
  15. 15.
    Wilkins MJ, Hoyt DW, Marshall MJ, Alderson PA, Plymale AE, Markillie LM, et al. CO2 exposure at pressure impacts metabolism and stress responses in the model sulfate-reducing bacterium Desulfovibrio vulgaris strain Hildenborough. Front Microbiol. 2014;5:507.Google Scholar
  16. 16.
    Bowers GM, Schaef HT, Loring JS, Hoyt DW, Burton SD, Walter ED, et al. Role of Cations in CO2 Adsorption, Dynamics, and Hydration in Smectite Clays under in Situ Supercritical CO2 Conditions. J Phys Chem C. 2017;121:577–92.Google Scholar
  17. 17.
    Jung HB, Carroll KC, Kabilan S, Heldebrant DJ, Hoyt D, Zhong L, et al. Stimuli-responsive/rheoreversible hydraulic fracturing fluids as a greener alternative to support geothermal and fossil energy production. Green Chem. 2015;17:2799–812.CrossRefGoogle Scholar
  18. 18.
    Ok S, Hoyt DW, Andersen A, Sheets J, Welch SA, Cole DR, et al. Surface Interactions and Confinement of Methane: A High Pressure Magic Angle Spinning NMR and Computational Chemistry Study. Langmuir. 2017;33:1359–67.CrossRefGoogle Scholar
  19. 19.
    Qi L, Alamillo R, Elliott WA, Andersen A, Hoyt DW, Walter ED, et al. Operando Solid-State NMR Observation of Solvent-Mediated Adsorption-Reaction of Carbohydrates in Zeolites. ACS Catal. 2017;7:3489–500.CrossRefGoogle Scholar
  20. 20.
    Zhao Z, Shi H, Wan C, Hu MY, Liu Y, Mei D, et al. Mechanism of phenol alkylation in zeolite H-BEA using in situ solid-state NMR spectroscopy. J Am Chem Soc. 2017;139:9178–85.CrossRefGoogle Scholar
  21. 21.
    Zhao C, Lercher JA. Selective Hydrodeoxygenation of Lignin-Derived Phenolic Monomers and Dimers to Cycloalkanes on Pd/C and HZSM-5 Catalysts. ChemCatChem. 2012;4:64–8.CrossRefGoogle Scholar
  22. 22.
    Corma A, Garcia H. Organic reactions catalyzed over solid acids. Catal Today. 1997;38:257–308.CrossRefGoogle Scholar
  23. 23.
    Janik MJ, Macht J, Iglesia E, Neurock M. Correlating Acid Properties and Catalytic Function: A First-Principles Analysis of Alcohol Dehydration Pathways on Polyoxometalates. J Phys Chem C. 2009;113:1872–85.CrossRefGoogle Scholar
  24. 24.
    Chiang H, Bhan A. Catalytic consequences of hydroxyl group location on the rate and mechanism of parallel dehydration reactions of ethanol over acidic zeolites. J Catal. 2010;271:251–61.CrossRefGoogle Scholar
  25. 25.
    Aerts A, Kirschhock CEA, Martens JA. Methods for in situ spectroscopic probing of the synthesis of a zeolite. Chem Soc Rev. 2010;39:4626–42.CrossRefGoogle Scholar
  26. 26.
    Xu S, Zhao Z, Hu MY, Han X, Hu JZ, Bao X. Investigation of water assisted phase transformation process from AlPO4-5 to AlPO4-tridymite. Microporous and Mesoporous Materials. 2016;223:241-6.CrossRefGoogle Scholar
  27. 27.
    Zhao Z, Xu S, Hu MY, Bao X, Hu JZ. In situ high temperature high pressure MAS NMR study on the crystallization of AlPO4-5. J Phys Chem C. 2016;120:1701–8.CrossRefGoogle Scholar
  28. 28.
    Rey F, Sankar G, Thomas JM, Barrett PA, Lewis DW, Catlow CRA, et al. Greaves, Synchrotron-Based Method for the Study of Crystallization: Templated Formation of CoALPO-5 Catalyst. Chem Mater. 1995;7:1435–6.CrossRefGoogle Scholar
  29. 29.
    Grandjean D, Beale AM, Petukhov AV, Weckhuysen BM. Unraveling the Crystallization Mechanism of CoAPO-5 Molecular Sieves under Hydrothermal Conditions. J Am Chem Soc. 2005;127:14454–65.CrossRefGoogle Scholar
  30. 30.
    Longstaffe JG, Chen B, Huang Y. Characterization of the amorphous phases formed during the synthesis of microporous material AlPO4-5. Microporous Mesoporous Mater. 2007;98:21–8.CrossRefGoogle Scholar
  31. 31.
    Xu J, Chen L, Zeng D, Yang J, Zhang M, Ye C, et al. Crystallization of AlPO4-5 Aluminophosphate Molecular Sieve Prepared in Fluoride Medium: A Multinuclear Solid-State NMR Study. J Phys Chem B. 2007;111:7105–13.CrossRefGoogle Scholar
  32. 32.
    Fan F, Feng Z, Sun K, Guo M, Guo Q, Song Y, et al. In Situ UV Raman Spectroscopic Study on the Synthesis Mechanism of AlPO-5. Angew Chem. 2009;121:8899–903.CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  • Nicholas R. Jaegers
    • 1
    • 2
  • Mary Y. Hu
    • 1
  • David W. Hoyt
    • 1
  • Yong Wang
    • 1
    • 2
  • Jian Zhi Hu
    • 1
  1. 1.Pacific Northwest National LaboratoryInstitute for Integrated Catalysis and Earth and Biological Science DirectorateRichlandUSA
  2. 2.Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanUSA

Personalised recommendations